若圆关于轴对称.则, 若圆关于轴对称.则, 若圆关于轴对称.则, 查看更多

 

题目列表(包括答案和解析)

以下四个关于圆锥曲线的命题中:①设为两个定点,为非零常数,,则动点的轨迹为双曲线;②过定圆上一定点作圆的动点弦为坐标原点,若则动点的轨迹为圆;③设的一内角,且,则表示焦点在轴上的双曲线;④已知两定点和一动点,若,则点的轨迹关于原点对称.
其中真命题的序号为               (写出所有真命题的序号).

查看答案和解析>>

以下四个关于圆锥曲线的命题中:①设为两个定点,为非零常数,,则动点的轨迹为双曲线;②过定圆上一定点作圆的动点弦为坐标原点,若则动点的轨迹为圆;③设的一内角,且,则表示焦点在轴上的双曲线;④已知两定点和一动点,若,则点的轨迹关于原点对称.
其中真命题的序号为               (写出所有真命题的序号).

查看答案和解析>>

如图,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的焦点和上顶点分别为F1、F2、B,我们称△F1BF2为椭圆C的特征三角形.如果两个椭圆的特征三角形是相似的,则称这两个椭圆是“相似椭圆”,且三角形的相似比即为椭圆的相似比.
(1)已知椭圆C1
x2
4
+y2=1
C2
x2
16
+
y2
4
=1
判断C2与C1是否相似,如果相似则求出C2与C1的相似比,若不相似请说明理由;
(2)写出与椭圆C1相似且半短轴长为b的椭圆Cb的方程,并列举相似椭圆之间的三种性质(不需证明);
(3)已知直线l:y=x+1,在椭圆Cb上是否存在两点M、N关于直线l对称,若存在,则求出函数f(b)=|MN|的解析式.

查看答案和解析>>

如图,已知椭圆的焦点和上顶点分别为F1、F2、B,我们称△F1BF2为椭圆C的特征三角形.如果两个椭圆的特征三角形是相似的,则称这两个椭圆是“相似椭圆”,且三角形的相似比即为椭圆的相似比.
(1)已知椭圆判断C2与C1是否相似,如果相似则求出C2与C1的相似比,若不相似请说明理由;
(2)写出与椭圆C1相似且半短轴长为b的椭圆Cb的方程,并列举相似椭圆之间的三种性质(不需证明);
(3)已知直线l:y=x+1,在椭圆Cb上是否存在两点M、N关于直线l对称,若存在,则求出函数f(b)=|MN|的解析式.

查看答案和解析>>

如图,已知椭圆的焦点和上顶点分别为

我们称为椭圆的特征三角形.如果两个椭圆的特征三角形是相似的,则称这两个椭圆是“相似椭圆”,且三角形的相似比即为 椭圆的相似比.

(1)已知椭圆

判断是否相似,如果相似则求出的相似比,若不相似请说明理由;

(2)设短半轴长为的椭圆与椭圆相似,试问在椭圆上是否存在两点关于直线对称,,若存在求出b的范围,不存在说明理由.

查看答案和解析>>


同步练习册答案