数列中..求的值. [解析]由.得 当时.,当时. 两式相除.得... 查看更多

 

题目列表(包括答案和解析)

已知数列的前项的和为是等比数列,且

⑴求数列的通项公式;

⑵设,求数列的前项的和

⑴   ,数列的前项的和为,求证:

【解析】第一问利用数列

依题意有:当n=1时,

时,

第二问中,利用由得:,然后借助于错位相减法

第三问中

结合均值不等式放缩得到证明。

 

查看答案和解析>>

已知函数y=f(x)对于任意(k∈Z),都有式子f(a-tanθ)=cotθ-1成立(其中a为常数).

(Ⅰ)求函数y=f(x)的解析式;

(Ⅱ)利用函数y=f(x)构造一个数列,方法如下:

对于给定的定义域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…在上述构造过程中,如果xi(i=1,2,3,…)在定义域中,那么构造数列的过程继续下去;如果xi不在定义域中,那么构造数列的过程就停止.

(ⅰ)如果可以用上述方法构造出一个常数列,求a的取值范围;

(ⅱ)是否存在一个实数a,使得取定义域中的任一值作为x1,都可用上述方法构造出一个无穷数列{xn}?若存在,求出a的值;若不存在,请说明理由;

(ⅲ)当a=1时,若x1=-1,求数列{xn}的通项公式.

查看答案和解析>>

(2006•石景山区一模)已知函数y=f(x)对于任意θ≠
2
(k∈Z),都有式子f(a-tanθ)=cotθ-1成立(其中a为常数).
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)利用函数y=f(x)构造一个数列,方法如下:
对于给定的定义域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…在上述构造过程中,如果xi(i=1,2,3,…)在定义域中,那么构造数列的过程继续下去;如果xi不在定义域中,那么构造数列的过程就停止.
(ⅰ)如果可以用上述方法构造出一个常数列,求a的取值范围;
(ⅱ)是否存在一个实数a,使得取定义域中的任一值作为x1,都可用上述方法构造出一个无穷数列{xn}?若存在,求出a的值;若不存在,请说明理由;
(ⅲ)当a=1时,若x1=-1,求数列{xn}的通项公式.

查看答案和解析>>

已知函数f(x)=
3
sin(2ωx-
π
3
)+b
,且该函数图象的对称中心和对称轴的最小距离为
π
4
,当x∈[0,
π
3
]
时,f(x)的最大值为
5
2

(1)求f(x)的解析式.
(2)画出f(x)在长度为一个周期内的简图(直接画图,不用列表).
(3)分步说明该函数的图象是由正弦曲线经过怎样的变化得到的.

查看答案和解析>>

(本小题满分14分)

已知函数对于任意),都有式子成立(其中为常数).

(Ⅰ)求函数的解析式;

(Ⅱ)利用函数构造一个数列,方法如下:

对于给定的定义域中的,令,…,,…

在上述构造过程中,如果=1,2,3,…)在定义域中,那么构造数列的过程继续下去;如果不在定义域中,那么构造数列的过程就停止.

(ⅰ)如果可以用上述方法构造出一个常数列,求的取值范围;

(ⅱ)是否存在一个实数,使得取定义域中的任一值作为,都可用上述方法构造出一个无穷数列?若存在,求出的值;若不存在,请说明理由;

(ⅲ)当时,若,求数列的通项公式.

查看答案和解析>>


同步练习册答案