大于而小于的分数有无数个. 查看更多

 

题目列表(包括答案和解析)

判断。(对的打“√”,错的打“×”)
(1)小数都比整数小。 
[     ]
(2)因为50÷0.5= 100,所以50是0.5的倍数。
[     ]
(3)小于而大于的分数有无数个。
[     ]
(4)最小的两位小数是0.01,最大的两位小数是0.99。
[     ]
(5)奇数都是质数,偶数都是合数。
[     ]

查看答案和解析>>

叶序现象与斐波那契数列

  你吃过菠萝么?仔细观察菠萝果实的排列状况,就会发现它们形成一种螺旋结构。使人惊异的是,这种排列的现象在植物的叶、鳞片、花等部分,几乎到处可见。

  再进一步研究一下这些排列的状况,它们通常是以顺时针方向或逆时针方向螺旋形层层排列的。如果数一下其中顺时针和逆时针排列的层数,就可发现这两个数是位于斐波那契数列中相邻的两个数。

  什么是斐波那契数列?斐波那契(1170-1240)是一位意大利的数学家。他在所写的《算盘书》一书中,提出了下面的问题。

  “有小兔子一对,如果它们第二个月成年,第三个月生下一对小兔,以后,每月生产小兔一对,而所生的小兔亦在第二个月成年,第三个月生产另一对小兔,此后也每个月生一对小兔。则一年后共有多少对兔子?(假设每产一对兔子必为一雌一雄,而所有兔子都可以相互交配,并且没有死亡。)

  分析:

  这样推算下去,每个月所生的兔子数可以排成下面的数列:

  1123581321345589144……

  我们把这一列数称为斐波那契数列。研究一下这一列数的规律,从第三项起每一个数都是排在它前面两个数的和。如

  2=113=125=238=3513=5821=813,…

  斐波那契数列可以无限地写下去。设表示其中的第n项,那么

  

  比如,我们上面排出的第11项是89,第12项是144,那么第13项应该是

  

以下各项依序是

  

  

  

  …   …    …

  生物学家研究了花序中小花排列的螺旋数,一般顺时针方向为21,逆时针方向为34,恰恰是斐波那契数列中的。又如向日葵花序中小花或籽粒的排列,顺时针螺旋数与逆时针螺旋数之比一般是1221()3455()89144(),在一些大型样本中,这个比值甚至为144233()。同样,生物学家研究了各种菠萝球形花的鳞片顺、逆时针的螺旋数,一般总是落在斐波那契数列35813相邻的两数中。

  为什么不同的植物都具有类似的螺旋?为什么这些螺旋圈数总是相邻的斐波那契数?兔子的繁衍与植物的花序之间为什么会有这样的联系,这些问题至今尚未得到令人满意的解答。目前,科学家们一般认为,对植物来说,斐波那契叶序是最节约能量的。

查看答案和解析>>

叶序现象与斐波那契数列

  你吃过菠萝么?仔细观察菠萝果实的排列状况,就会发现它们形成一种螺旋结构。使人惊异的是,这种排列的现象在植物的叶、鳞片、花等部分,几乎到处可见。

  再进一步研究一下这些排列的状况,它们通常是以顺时针方向或逆时针方向螺旋形层层排列的。如果数一下其中顺时针和逆时针排列的层数,就可发现这两个数是位于斐波那契数列中相邻的两个数。

  什么是斐波那契数列?斐波那契(1170-1240)是一位意大利的数学家。他在所写的《算盘书》一书中,提出了下面的问题。

  “有小兔子一对,如果它们第二个月成年,第三个月生下一对小兔,以后,每月生产小兔一对,而所生的小兔亦在第二个月成年,第三个月生产另一对小兔,此后也每个月生一对小兔。则一年后共有多少对兔子?(假设每产一对兔子必为一雌一雄,而所有兔子都可以相互交配,并且没有死亡。)

  分析:

  这样推算下去,每个月所生的兔子数可以排成下面的数列:

  1123581321345589144……

  我们把这一列数称为斐波那契数列。研究一下这一列数的规律,从第三项起每一个数都是排在它前面两个数的和。如

  2=113=125=238=3513=5821=813,…

  斐波那契数列可以无限地写下去。设表示其中的第n项,那么

  

  比如,我们上面排出的第11项是89,第12项是144,那么第13项应该是

  

以下各项依序是

  

  

  

  …   …    …

  生物学家研究了花序中小花排列的螺旋数,一般顺时针方向为21,逆时针方向为34,恰恰是斐波那契数列中的。又如向日葵花序中小花或籽粒的排列,顺时针螺旋数与逆时针螺旋数之比一般是1221()3455()89144(),在一些大型样本中,这个比值甚至为144233()。同样,生物学家研究了各种菠萝球形花的鳞片顺、逆时针的螺旋数,一般总是落在斐波那契数列35813相邻的两数中。

  为什么不同的植物都具有类似的螺旋?为什么这些螺旋圈数总是相邻的斐波那契数?兔子的繁衍与植物的花序之间为什么会有这样的联系,这些问题至今尚未得到令人满意的解答。目前,科学家们一般认为,对植物来说,斐波那契叶序是最节约能量的。

查看答案和解析>>

节省材料焊水箱

  小聪、小明、小慧、小灵、小虎5个小伙伴是同班同学,也是要好的邻居,他们组成了课外学习小组,经常在王大伯的指导下研究一些生活中的数学问题。

  一天,王大伯要用一块长240cm、宽120cm的长方形铁皮,焊接成一个高30cm的长方体无盖水箱,请他们设计一个最省材料的方案。

  大家都意识到,要做到最省材料就需要想办法增加容积,可不是一件容易的事,商量一下后,大家都认真地画起图来。

  性急的小虎马上就想出了办法,他先画出了一个图(如图),说:“从这个长方形的四个角处各切掉一个边长为30cm的正方形,然后折起四边,就可以得到一个高30cm的水箱啦!

  小虎刚说完,小慧就接过话来:“这个方案肯定不理想,浪费了4个角的材料多可惜!

  大家都想不出好的办法,于是个个紧锁眉头在底下胡乱画着,突然小聪大叫起来:“我想出办法了,可以在一边切出两个正方形,然后在对面焊上,这样做成的水箱宽60cm、高30cm,但长是210cm,而且没有浪费材料,我想容积也一定大了。”

  小明很快算出了刚才小虎设计的容积大约是324升,小聪的方案(如图)大约是378升,容积是大多了,而且充分地利用了材料,正当大家为小聪高兴的时候,小灵冷不丁的冒出一句:“这样的容积一定是最大的吗?不浪费不等于最节省啊,既然高已经确定了,我想只有底面积最大容积才最大,最充分的利用材料也就是最节省材料。”

  经小灵一提醒,小慧突然想到:“老师说过,周长相等时,正方形的面积最大,应该尽量让底面积做成正方形的。”最后还是小灵想出办法:我们先切下两块长120cm、宽30cm的长方形,然后在另两边焊上,作为水箱的两个侧面,这样做的水箱底恰好是一个正方形(如图)

  读完上述内容,你看懂了吗?如果看懂了,请你试着解决下面的问题,你是否还有其他的设计方案,请你动手画一画,算一算:

  用一张长30厘米、宽20厘米的长方形铁皮(如图)做一个长方体铁皮盒(焊接处与铁皮厚度不计),做成的铁盒容积是多少立方厘米?

查看答案和解析>>