准备一张正方形纸片和一把剪刀.现将正方形纸片剪成4个大小形状相同的小正方形.然后将其中一片又按同样的方法剪成4小片.再将其中的一小片正方形纸片剪成更小的4小片--如此继续下去.剪4次可以得到多少个正方形?如果能剪100次.共有多少个正方形?剪n次呢? 查看更多

 

题目列表(包括答案和解析)

通过计算,比较下列各组中两个数的大小(在空格内填“<”“>”“=”)
(1)12
 
21;(2)23
 
32;(3)34
 
43;(4)45
 
54;(5)56
 
65;…
(2)、从第1题的结果经过归纳,可猜想出nn+1和( n+1)n的大小关系是.
(3)、根据上面的归纳猜想得到的一般结论,试比较下面两数的大小.
20022003
 
20032002
27、如图,将一张正方形纸片,剪成四个大小形状一样的小正方形,然后将其中的一个小正方形再按同样的方法剪成四个小正方形,再将其中的一个小正方形剪成四个小正方形,如此循环进行下去;
精英家教网
(1)填表:
精英家教网
(2)请你推断,能不能按上述操作过程,将原来的正方形剪成99个小正方形?为什么?
(3)观察图形,你还能得出什么规律?

查看答案和解析>>

4、一张正方形纸片,通过两次对折,然后按阴影部分进行裁剪并展开,可以得到如图①末的“蝴蝶结”:

请你仿图①,将下面的正方形纸片经过两次对折后裁剪并展开,得到如图②末的图形,请画出虚心和实线表示折叠过程,并用阴影表示剪去的部分.

查看答案和解析>>

如图1,在长为44,宽为12的矩形PQRS中,将一张直角三角形纸片ABC和一张正方形纸片DEFG如图放置,其中边AB、DE在PQ上,边EF在QR上,边BC、DG在同一直线上,且Rt△ABC两直角边BC=6,AB=8,正方形DEFG的边长为4.从初始时刻开始,三角形纸片ABC,沿AP方向以每秒1个单位长度的速度向左平移;同时正方形纸片DEFG,沿QR方向以每秒2个单位长度的速度向上平移,当边GF落在SR上时,纸片DEFG立即沿RS方向以原速度向左平移,直至G点与S点重合时,两张纸片同时停止移动.设平移时间为x秒.
(1)请填空:当x=2时,CD=
2
2
2
2
,DQ=
4
2
4
2
,此时CD+DQ
=
=
CQ(请填“<”、“=”、“>”);
(2)如图2,当纸片DEFG沿QR方向平移时,连接CD、DQ和CQ,求平移过程中△CDQ的面积S与x的函数关系式,并写出自变量x的取值范围(这里规定线段的面积为零);
(3)如图3,当纸片DEFG沿RS方向平移时,是否存在这样的时刻x,使以A、C、D为顶点的三角形是等腰三角形?若存在,求出对应x的值;若不存在,请说明理由.

查看答案和解析>>

16、用一张正方形纸片,在一边剪下一个宽度为1cm的矩形,剩下的也是矩形面积6cm2,用这样的矩形4张拼成一个中间有一个方孔的正方形,求所拼成正方形和原正方形纸片的面积.

查看答案和解析>>

如图,把三张完全相同的纸片分别画上正方形和正三角形,做拼图游戏:两张三角形的纸片拼成菱形,一张三角形纸片和一张正方形纸片拼成房子.将这三张纸片放在盒子里搅匀任取两张
(1)用树状图或列表法计算它们能拼成房子的概率;
(2)有人用一个骰子及规定:“这个骰子中点数为1、2的面表示正方形纸片,点数为3、4、5、6的面表示两张三角形纸片,连续抛这个骰子两次表示任取两张纸片.”进行上述拼图游戏的模拟试验,估计它们能拼成房子的概率.你认为正确吗,请说明理由.

查看答案和解析>>


同步练习册答案