某校正对教室进行消毒试验.试验发现教室内每立方米空气中的含药量y之间的关系如图所示.请根据题中所提供的信息.回答下列问题.(1)什么时间.教室内含药量y随时间变化而逐渐减少? 什么时间含药量最多?是多少? (2)研究表明.当空气中每立方米的含药量低于 6 查看更多

 

题目列表(包括答案和解析)

为了预防“流感”,某学校对教室进行“药熏”消毒.下图反映了从药物燃烧开始,室内每立方米的含药量y(毫克)与时间x(分钟)之间的函数关系.已知在药物燃烧阶段,y与x之间具有二次函数关系;药物燃烧结束后,y与x成反比例.精英家教网
(1)试求药物燃烧阶段,y关于x的函数解析式并写出取值范围;
(2)若每立方米的含药量不低于20毫克且持续时间超过25分钟,才能达到有效消毒,试问这次“药熏”消毒是否有效?

查看答案和解析>>

为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为y=
at
(a为常数),如图所示.据图中提供的信息,解答下列问题:
(1)写出从药物释放开始,y与t之间的两个函数关系式及相应的自变量取值范围;
(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?

查看答案和解析>>

为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为y=
at
(a为常数),如图所示.据图中提供的信息,解答下列问题:
(1)写出从药物释放开始,y与t之间的两个函数关系式及相应的自变量的取值范围;
(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进入精英家教网教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?

查看答案和解析>>

为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为y=
at
(a为常数),如图所示.据图中提供的信息,解答下列问题:
y(毫克)O3t(小时)1P
(1)写出从药物释放开始,y与t之间的两个函数关系式及相应的自变量取值范围;
(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?
(3)当空气中每立方米空气中的含药量y达到0.6毫克消毒才有效,问消毒的有效时间为多少?

查看答案和解析>>

为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒,已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为y=
at
(a为常数),如图所示.据图中提供的信息,解答下列问题:
(1)求a的值;
(2)写出从药物释放过程中,y与t之间的函数关系式及相应的自变量的取值范围;
(3)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?(药物释放过程中,学生一律不能进教室)

查看答案和解析>>


同步练习册答案