如图1.△ABC的边BC上的高是线段 . 查看更多

 

题目列表(包括答案和解析)

如图,等边△ABC的边长为6,BC在x轴上,BC边上的高线AO在y轴上,直线l绕点A转动(与线段BC没有交点),设与AB、l、x轴相切的⊙O1的半径为,与AC、l、x轴相切的⊙O2半径为。
(1)求两圆的半径之和;
(2)探索直线l绕点A转动到什么位置时两圆的面积之和最小?最小值是多少?
(3)若,求经过点O1、O2的一次函数解析式。

查看答案和解析>>

如图,在△ABC中,AD是BC边上的高,在线段BC上找一点E,使△ABE的面积与△AEC的面积相等,则点E是线段BC的中点,并说明理由。

查看答案和解析>>

如图,已知等边△ABC和点P,设点P到△ABC三边AB、AC、BC(或其延长线)的距离分别为h1、h2、h3,△ABC的高为h.在图①中,点P是边BC的中点,由S△ABP+S△ACP=S△ABC得,AB.h1+AC.h2=BC.h,可得h1+h2=h又因为h3=0,所以:h1+h2+h3=h.图②~⑤中,点P分别在线段MC上、MC延长线上、△ABC内、△ABC外.
(1)请探究:图②~⑤中,h1、h2、h3、h之间的关系;(直接写出结论)
(2)说明图②所得结论为什么是正确的;
(3)说明图⑤所得结论为什么是正确的。

查看答案和解析>>

如图,已知△ABC三边长相等,和点P,设点P到△ABC三边AB、AC、BC(或其延长线)的距离分别为h1、h2、h3,△ABC的高为h,在图①中,点P是边BC的中点,由得,AB·h1+AC·h2=BC·h,可得h1+h2=h,又因为h3=0,所以:h1+h2+h3=h。图②~⑤中,点P分别在线段MC上、MC延长线上、△ABC内、△ABC外。
(1)请探究:图②~⑤中,h1、h2、h3、h之间的关系;(直接写出结论)
(2)说明图③所得结论为什么是正确的;
(3)说明图⑤所得结论为什么是正确的。

查看答案和解析>>

如图,在△ABC中,AD是边BC上的高,E为边AC的中点,BC=14,AD=12,sinB=
(1)求线段DC的长;
(2)求tan∠EDC的值。

查看答案和解析>>


同步练习册答案