点动成 . 成面.面动成体. 查看更多

 

题目列表(包括答案和解析)

假如我们把笔尖看作一个点,当笔尖在纸上移动时,就能画出线,说明了(    ),时钟秒针旋转时,形成一个圆面,这说明了(    ),三角板绕它的一条直角边旋转一周,形成一个圆锥体,这说明了(    )。

查看答案和解析>>

如图,直线AC∥BD,连结AB,直线AC、BD及线段AB把平面分成①,②,③,④四个部分,规定:线上各点不属于任何部分。当动点P落在某个部分时,连结PA、PB,构成∠PAC,∠APB,∠PBD三个角。(提示:有公共端点的两条重合的射线所组成的角是0°)
       
(1)当动点P落在第①部分时,试说明∠APB=∠PAC+∠PBD;
(2)当动点P落在第②部分时,∠APB,∠PAC,∠PBD三个角之间的关系是:
                                                                
(3)动点P在第③部分时,试探究∠APB,∠PAC,∠PBD三个角之间的关系,写出点P的具体位置和相应的结论,并选择一种结论加以说明.

查看答案和解析>>

如图,直线AC∥BD,连结AB,直线AC、BD及线段AB把平面分成①,②,③,④四个部分,规定:线上各点不属于任何部分。当动点P落在某个部分时,连结PA、PB,构成∠PAC,∠APB,∠PBD三个角。(提示:有公共端点的两条重合的射线所组成的角是0°)

       

(1)当动点P落在第①部分时,试说明∠APB=∠PAC+∠PBD;

(2)当动点P落在第②部分时,∠APB,∠PAC,∠PBD三个角之间的关系是:

                                                                

(3)动点P在第③部分时,试探究∠APB,∠PAC,∠PBD三个角之间的关系,写出点P的具体位置和相应的结论,并选择一种结论加以说明.

 

查看答案和解析>>

如图,直线AC∥BD,连接AB,直线AC,BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分,当动点P落在某个部分时,连接PA,PB,构成∠PAC,∠APB,∠PBD三个角。(提示:有公共端点的两条重合的射线所组成的角是0°角)
(1)当动点P落在第①部分时,求证:∠APB=∠PAC+∠PBD;
(2)当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立?(直接回答成立或不成立)
(3)当动点P在第③部分时,全面探究∠PAC,∠APB,∠PBD之间的关系,并写出动点P的具体位置和相应的结论,选择其中一种结论加以证明。

查看答案和解析>>

如图,直线AC∥BD,连结AB,直线AC、BD及线段AB把平面分成①,②,③,④四个部分,规定:线上各点不属于任何部分。当动点P落在某个部分时,连结PA、PB,构成∠PAC,∠APB,∠PBD三个角。(提示:有公共端点的两条重合的射线所组成的角是0°)
       
(1)当动点P落在第①部分时,试说明∠APB=∠PAC+∠PBD;
(2)当动点P落在第②部分时,∠APB,∠PAC,∠PBD三个角之间的关系是:
                                                                
(3)动点P在第③部分时,试探究∠APB,∠PAC,∠PBD三个角之间的关系,写出点P的具体位置和相应的结论,并选择一种结论加以说明.

查看答案和解析>>


同步练习册答案