1.两个有理数的和为正数时.这两个数都是正数. ( ) 查看更多

 

题目列表(包括答案和解析)

两个有理数的和为正数时,这两个数都是正数.(  )

(  )

查看答案和解析>>

两个有理数的和为正数时,这两个数都是正数。
[     ]

查看答案和解析>>

如图,用两个边长均为1的正方形ABCD和DCEF拼成一个矩形ABEF,把一个足够大的直角三角尺的直角顶点与这个矩形的边AF的中点D重合,固定矩形ABEF,将直角三角尺绕点D按逆时针方向旋转.
(1)观察并证明:当直角三角尺的两直角边分别与矩形ABEF的两边BE、EF相交于点G、H时(如图甲),通过观察或测量BG与EH的长度,你能得到什么结论,并证明你的结论;
(2)操作:在旋转过程中,设直角三角尺的两直角边分别与射线BE、射线EF交于G、H(如图乙是旋转过程中的一种状态),DG交EH于O,设BG=x(x>0).
探究①:设直角三角尺与矩形ABEF重叠部分的面积为y,直接写出y与x之间的函数关系式,并写出自变量x的取值范围;
探究②:在旋转过程中,∠DGE能否为30°?若能,设此时过点D有一直线分别与EF、EG交于M、N,该直线恰好平分△OEG的面积,求EM的长,若不能,请说明理由(注:
2
3
3
≈1.05
).
精英家教网

查看答案和解析>>

如图,把两个全等的Rt△AOB和Rt△ECD分别置于平面直角坐标系xOy中,使点E与点B重合,直角边OB、BC在y轴上.已知点D(4,2),过A、D两点的直线交y轴于点F.若△ECD沿DA方向以每秒
2
个单位长度的速度匀速平移,设平移的时间为t(秒),记△ECD在平移过程中某时刻为△E′C′D′,E′D′与AB交于点M,与y轴交于点N,C′D′与AB交于点Q,与y轴交于点P(注:平移过程中,点D′始终在线段DA上,且不与点A重合).
(1)求直线AD的函数解析式;
(2)试探究在△ECD平移过程中,四边形MNPQ的面积是否存在最大值?若存在,求出这个最大值及t的取值;若不存在,请说明理由;
(3)以MN为边,在E′D′的下方作正方形MNRH,求正方形MNRH与坐标轴有两个公共点时t的取值范围.

查看答案和解析>>

如图①,将两个等腰直角三角形叠放在一起,使上面三角板的一个锐角顶点与下面三角板的直角顶点重合,并将上面的三角板绕着这个顶点逆时针旋转,在旋转过程中,当下面三角板的斜边被分成三条线段时,我们来研究这三条线段之间的关系.
(1)实验与操作:
如图②,如果上面三角板的一条直角边旋转到CM的位置时,它的斜边恰好旋转到CN的位置,请在网格中分别画出以AM、MN和NB为边长的正方形,观察这三个正方形的面积之间的关系;
(2)猜想与探究:
如图③,在Rt△ABC中,BC=AC,∠ACB=90°,M、N是AB边上的点,∠MCN=45°,作DA⊥AB于点A,截取DA=NB,并连接DC、DM.
我们来证明线段CD与线段CN相等.
∵∠CAB=∠CBA=45°,又DA⊥AB于点A,
∴∠DAC=45°,∴∠DAC=∠CBA,
又∵DA=NB,BC=AC,
∴△CAD≌△CBN.
∴CD=CN.

请你继续解答:
①线段MD与线段MN相等吗?为什么?
②线段AM、MN、NB有怎样的数量关系,为什么?
(3)拓广与运用:
如图④,已知线段AB上任意一点M(AM<MB),是否总能在线段MB上找到一点N,使得分别以AM与BN为边长的正方形的面积的和等于以MN为边长的正方形的面积?若能,请在图④中画出点N的位置,并简要说明作法;若不能,请说明理由.

查看答案和解析>>


同步练习册答案