把78536000经四舍五入保留三个有效数字可写成 78600000 (D) 查看更多

 

题目列表(包括答案和解析)

(本题满分12分)学完二次函数后,同学们对二次函数的图象抛物线产生了浓厚兴趣,在一次数学实验课上,孔明同学用一把宽3 cm且带刻度的矩形直尺对抛物线进行了如下测量:

   ①量得OA=3 cm;

   ②把直尺的左边与抛物线的对称轴重合,使得直尺左下端点与抛物线的顶点重合(如图①),测得抛物线与直尺右边的交点C的刻度读数为4.5.

   请完成下列问题:

   1.(1)求抛物线的对称轴.

   2.(2)求抛物线所对应的函数关系式.

   3.(3)将图中的直尺(足够长)沿水平方向向右平移到点A的右边(如图②),直尺的两边交x轴于点H、G,交抛物线于点E、F.求证:S梯形EFGH=(EF2-9).

 

查看答案和解析>>

(本题满分12分)学完二次函数后,同学们对二次函数的图象抛物线产生了浓厚兴趣,在一次数学实验课上,孔明同学用一把宽3 cm且带刻度的矩形直尺对抛物线进行了如下测量:

   ①量得OA=3 cm;

   ②把直尺的左边与抛物线的对称轴重合,使得直尺左下端点与抛物线的顶点重合(如图①),测得抛物线与直尺右边的交点C的刻度读数为4.5.

   请完成下列问题:

   1.(1)求抛物线的对称轴.

   2.(2)求抛物线所对应的函数关系式.

   3.(3)将图中的直尺(足够长)沿水平方向向右平移到点A的右边(如图②),直尺的两边交x轴于点H、G,交抛物线于点E、F.求证:S梯形EFGH=(EF2-9).

 

查看答案和解析>>

检验方程组的解时,必须将求得的未知数的值代入方程组中的每一个方程.
例1:解方程组数学公式
思路分析:本例这两个方程中①较简单,且x、y的系数均为1,故可把①变形,把x用y表示,或把y用x来表示皆可,然后将其代入②,消去一个未知数,化成一元一次方程,进而再求出方程组的解.
解:把①变形为y=4-x ③
把③代入②得:数学公式-数学公式=1
数学公式-数学公式=1,数学公式=数学公式-1,数学公式=数学公式
∴x=数学公式
把x=数学公式代入③得y=4-数学公式=3数学公式
所以原方程的解是数学公式
若想知道解的是否正确,可作如下检验:
检验:把x=数学公式,y=3数学公式代入①得,左边=x+y=数学公式+3数学公式=4,右边=4.
所以左边=右边.
再把x=数学公式,y=3数学公式代入②得
左边数学公式-数学公式=数学公式-数学公式=数学公式-数学公式=1,右边=1.
所以左边=右边.
所以数学公式是原方程组的解.

查看答案和解析>>

观察猜想
如图,大长方形是由四个小长方形拼成的,请根据此图填空:x2+(p+q)x+pq=x2+px+qx+pq=(______)(______).
说理验证
事实上,我们也可以用如下方法进行变形:
x2+(p+q)x+pq=x2+px+qx+pq=(x2+px)+(qx+pq)=______=(______)(______).
于是,我们可以利用上面的方法进行多项式的因式分解.
尝试运用
例题 把x2+3x+2分解因式.
解:x2+3x+2=x2+(2+1)x+2×1=(x+2)(x+1).
请利用上述方法将下列多项式分解因式:
(1)x2-7x+12;       (2)(y2+y)2+7(y2+y)-18.

查看答案和解析>>

为了测量校园内一棵不可攀的树的高度,学校数学应用实践小组做了如下的探索

  实践一:根据《自然科学》中的反射定律,利用一面镜子和一根皮尺,设计如图8的测量方案:

  把镜子放在离树(AB)8.7米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.7米,观察者目高CD=1.6米,请你计算树(AB)的高度(精确到0.1米).

  实践二:提供选用的测量工具有:①皮尺一根;②教学用三角板一副;③长为2.5米的标杆一根;④高度为1.5米的测角仪(能测量仰角、俯角的仪器)一架.请根据你所设计的测量方案,回答下列问题:

  (1)在你设计的方案中,选用的测量工具是(用工具的序号填写)______;

  (2)在图1中画出你的测量方案示意图;

图1

  (3)你需要测得示意图中哪些数据,并分别用abca 等表示测得的数据______;

  (4)写出求树高的算式:AB=_________________________.

查看答案和解析>>


同步练习册答案