因为题目中只是问“马 所在的位置,所以我们只要考虑“马 的位置变化规律就可以了.“马 最开始在2号位置,我们记做②,那么变化规律为: ② ④ ③ ① ② --很容易看出,每交换一次位置,“马 就按顺时针方向转动一格,所以每交换四次,“马 就可以回到原地.因为20¸4=5正好整除,说明“马 正好转了5圈回到原地.所以交换二十次位置后,“马 仍在2号小格内. 查看更多

 

题目列表(包括答案和解析)

把下列各数填在相应的集合内:

-3,2,-1,-,-0.58,0,-3.1415926,0.618,

整数集合:{  …};

分数集合:{  …};

负数集合:{  …};

非负数集合:{  …}.

(题目中只是具体地填出几个符合条件的数,只是一部分,所以通常最后要加省略号)

查看答案和解析>>

阅读下面的解题过程,然后解答后面的问题.

  题目:如图(1),已知正方形ABCD中,点M是AB的中点,点E是AB延长线上的一点,MN⊥DM交∠CBE的平分线BN于点N.试说明MD=MN.

  解:在AD上取一点F,使AF=AM,连结MF.

  因为ABCD是正方形,

  所以DF=MB,∠1+∠AMD=90°.

  因为DM⊥MN,

  所以∠AMD+∠2=90°.

  所以∠1=∠2.

  因为BN平分∠CBE,

  所以∠MBN=135°=∠DFM.

  所以△DFM≌△MBN.

  所以DM=MN.

(1)在上述说理过程中,“点M是AB的中点”这个条件没有用到,若将这个条件改为“点M是AB上的任意一点”,或“点M是AB延长线上的任意一点”,或“点M是BA延长线上的任意一点”,则结论“DM=MN”还成立吗?请说明理由;

(2)如图(2),在正三角形ABC中,若AE=CD,则∠BFE=60°;如图(3),在正方形ABCD中,若DE=CF,则∠AGF=90°.这里的两个结论“∠BFE=60°”和“∠AGF=90,分别与题目的背景条件“正三角形ABC”和“正方形ABCD”有关.你能否改编一道题目,改变上述题目的背景“正方形ABCD”,并相应改变条件“MN⊥DM”,而其余条件与结论不变?请说明所编题目的正确性.

查看答案和解析>>

5、如图所示,小敏做《典中点》中的试题时,不小心把题目中的三角形用墨水弄污了一部分,她想在一块白纸上作一个完全一样的三角形,然后粘贴在上面,她作图的依据是(  )

查看答案和解析>>

7、阅读下面“平均数”一课的课堂教学片断,请你作简单评述.
师:学到这里,我们已经基本掌握了求平均数的一般方法.其实,在求平均数前,我们还可以先估算这个平均数的范围.请大家看这样一个例子:“一个小组有6个同学,他们的体重分别是32千克、30千克、35千克、30千克、33千克、32千克,这个小组的平均体重是多少千克?”
仔细想一想,这个小组同学的平均体重肯定比多少千克多,比多少千克少?
生1:比30千克多,比35千克要少.
生2:我也认为是这样的.
师:为什么呢?我们能否说出一个道理?
学生同桌或小组进行讨论.
师:谁先发言?
生:因为求6个同学的平均体重,可以看成是“以多补少”,就是要把最重的35千克移一些给最轻的30千克.所以这个平均数肯定不会比35千克多,比30千克少.
师:(带头鼓掌,学生也跟着鼓掌)说得好.请大家计算出结果,再与刚才的估算的平均数范围对照一下,是否对?
生:(学生各自计算:(32+30+35+30+33+32)÷6=32(千克))
师:好.这个结果说明我们刚才估算的结果是正确的.那么这个“32千克”与题目中的“32千克”意思一样吗?
生:不一样.题目中的“32千克”是一个同学的体重,结果中的“32千克”是6个同学的平均体重.
师:说得对!我们解答应用题,不但要会,而且要懂得解答结果的意思.

查看答案和解析>>

下列说法正确个数是(  )
①x2=1是一元二次方程;
②2x2=2(x-1)(x-1)是一元二次方程;
③x2+
1
x
=2不是一元二次方程,因为左边x2+
1
x
不是整式;
④2x2-x-y=1不是一元二次方程,因为方程中含有两个未知数x,y.
A、4个B、3个C、2个D、1个

查看答案和解析>>


同步练习册答案