22.解方程: (1)在梯形面积公式中. (2) 已知.求的值. 查看更多

 

题目列表(包括答案和解析)

阅读理解题:
已知:如图,△ABC中,AB=AC,P是底边BC上的任一点(不与B、C重合),CD⊥AB于D,PE⊥AB于E,PF⊥AC于F.
求证:CD=PE+PF.
在解答这个问题时,小明与小颖的思路方法分别如下:
小明的思路方法是:过点P作PG⊥CD于G(如图1),则可证得四边形PEDG是矩形,也可证得△PCG≌△CPF,从而得到PE=DG,PF=CG,因此得CD=PE+PF.
小颖的思路方法是:连接PA(如图2),则S△ABC=S△PAB+S△PAC,再由三角形的面积公式便可证得CD=PE+PF.
由此得到结论:等腰三角形底边上任意一点到两腰的距离之和等于一腰上的高.
阅读上面的材料,然后解答下面的问题:
(1)针对小明或小颖的思路方法,请选择俩人中的一种方法把证明过程补充完整
(2)如图3,梯形ABCD中,AD∥BC,∠ABC=60°,AB=AD=CD=2,E是BC上任意一点,EM⊥BD于M,EN⊥AC于N,试利用上述结论
求EM+EN的值.
精英家教网

查看答案和解析>>

阅读理解题:
已知:如图,△ABC中,AB=AC,P是底边BC上的任一点(不与B、C重合),CD⊥AB于D,PE⊥AB于E,PF⊥AC于F.
求证:CD=PE+PF.
在解答这个问题时,小明与小颖的思路方法分别如下:
小明的思路方法是:过点P作PG⊥CD于G(如图1),则可证得四边形PEDG是矩形,也可证得△PCG≌△CPF,从而得到PE=DG,PF=CG,因此得CD=PE+PF.
小颖的思路方法是:连接PA(如图2),则S△ABC=S△PAB+S△PAC,再由三角形的面积公式便可证得CD=PE+PF.
由此得到结论:等腰三角形底边上任意一点到两腰的距离之和等于一腰上的高.
阅读上面的材料,然后解答下面的问题:
(1)针对小明或小颖的思路方法,请选择俩人中的一种方法把证明过程补充完整
(2)如图3,梯形ABCD中,AD∥BC,∠ABC=60°,AB=AD=CD=2,E是BC上任意一点,EM⊥BD于M,EN⊥AC于N,试利用上述结论
求EM+EN的值.

查看答案和解析>>

阅读理解题:
已知:如图,△ABC中,AB=AC,P是底边BC上的任一点(不与B、C重合),CD⊥AB于D,PE⊥AB于E,PF⊥AC于F.
求证:CD=PE+PF.
在解答这个问题时,小明与小颖的思路方法分别如下:
小明的思路方法是:过点P作PG⊥CD于G(如图1),则可证得四边形PEDG是矩形,也可证得△PCG≌△CPF,从而得到PE=DG,PF=CG,因此得CD=PE+PF.
小颖的思路方法是:连接PA(如图2),则S△ABC=S△PAB+S△PAC,再由三角形的面积公式便可证得CD=PE+PF.
由此得到结论:等腰三角形底边上任意一点到两腰的距离之和等于一腰上的高.
阅读上面的材料,然后解答下面的问题:
(1)针对小明或小颖的思路方法,请选择俩人中的一种方法把证明过程补充完整
(2)如图3,梯形ABCD中,AD∥BC,∠ABC=60°,AB=AD=CD=2,E是BC上任意一点,EM⊥BD于M,EN⊥AC于N,试利用上述结论
求EM+EN的值.

查看答案和解析>>

在学习扇形的面积公式时,同学们推得S扇形=,并通过比较扇形面积公式与弧长公式,得出扇形面积的另一种计算方法S扇形=,接着老师让同学们解决两个问题:
问题I:求弧长为4π,圆心角为120°的扇形面积,
问题II:某小区设计的花坛形状如图中的阴影部分,已知所在圆的圆心都是点O,的长为l1的长为l2,AC=BD=d,求花坛的面积。
(1)请你解答问题I;
(2)在解完问题Ⅱ后的全班交流中,一名同学发现扇形面积公式S扇形=,类似于三角形面积公式,类比梯形面积公式,他猜想花坛的面积S=(l1+l2)d,他的猜想正确吗?如果正确,写出推导过程;如果不正确,请说明理由。

查看答案和解析>>

在学习扇形的面积公式时,同学们推得S扇形=数学公式,并通过比较扇形面积公式与弧长公式l=数学公式,得出扇形面积的另一种计算方法S扇形=数学公式lR.接着老师让同学们解决两个问题:
问题Ⅰ:求弧长为4π,圆心角为120°的扇形面积.
问题Ⅱ:某小区设计的花坛形状如图中的阴影部分,已知AB和CD所在圆心都是点O,弧AB的长为l1,弧CD的长为l2,AC=BD=d,求花坛的面积.
(1)请你解答问题Ⅰ;
(2)在解完问题Ⅱ后的全班交流中,有位同学发现扇形面积公式S扇形=数学公式lR类似于三角形面积公式;类比梯形面积公式,他猜想花坛的面积S=数学公式(l1+l2)d.他的猜想正确吗?如果正确,写出推导过程;如果不正确,请说明理由.作业宝

查看答案和解析>>


同步练习册答案