6.如果三角形中有两边长是和.则第三边的取值范围是 . 查看更多

 

题目列表(包括答案和解析)

如图,在一个等边三角形EFG的内部做一个矩形ABCD,其中等边三角形的边长为40 cm,点C和点D分别在边EF、EG上.

(1)如果设矩形的一边AB=x cm,那么AD的长度如何表示?

(2)设矩形的面积为y cm,当x取何值时,y的值最大,最大值是多少?

(提示:过点E作EM⊥GF,交CD于点N)

(1)EM的长为________cm.

(2)由DC∥GF,得△________∽△________.

所以DC∶GF=EN∶EM.

(3)设矩形的一边AB=x cm,则x∶40=(EM-AD)∶EM,解得AD=________.

(4)y与x之间的表达式是________.

(5)因为a________0,所以y有最________值.当x=________时,矩形的面积有最大值,最大值是________.

析一析:(1)先求出EM的长;

(2)由DC∥GF可以得出两个三角形相似;

(3)利用相似三角形的性质,求出AD的长;

(4)由矩形的面积=AD·AB,可以求出y与x之间的关系式;

(5)利用y与x之间的关系式可以解答第(2)问吗?试完成下面的解答过程.

查看答案和解析>>

有如图所示的五种塑料薄板(厚度不计):①两直角边分别为3、4的直角三角形ABC;
②腰长为4、顶角为36°的等腰三角形JKL;
③腰长为5、顶角为120°的等腰三角形OMN;
④两对角线和一边长都是4且另三边长相等的凸四边形PQRS;
⑤长为4且宽(小于长)与长的比是黄金分割比的黄金矩形WXYZ.
它们都不能折叠,现在将它们一一穿过一个内、外径分别为2.4、2.7的铁圆环.
我们规定:如果塑料板能穿过铁环内圈,则称为此板“可操作”;否则,便称为“不可操作”.
(1)证明:第④种塑料板“可操作”;求:从这五种塑料板中任意取两种至少有一种“不可操作”的概率.
精英家教网

查看答案和解析>>

有如图所示的五种塑料薄板(厚度不计):①两直角边分别为3、4的直角三角形ABC;
②腰长为4、顶角为36°的等腰三角形JKL;
③腰长为5、顶角为120°的等腰三角形OMN;
④两对角线和一边长都是4且另三边长相等的凸四边形PQRS;
⑤长为4且宽(小于长)与长的比是黄金分割比的黄金矩形WXYZ.
它们都不能折叠,现在将它们一一穿过一个内、外径分别为2.4、2.7的铁圆环.
我们规定:如果塑料板能穿过铁环内圈,则称为此板“可操作”;否则,便称为“不可操作”.
(1)证明:第④种塑料板“可操作”;求:从这五种塑料板中任意取两种至少有一种“不可操作”的概率.

查看答案和解析>>

有如图所示的五种塑料薄板(厚度不计):①两直角边分别为3、4的直角三角形ABC;
②腰长为4、顶角为36°的等腰三角形JKL;
③腰长为5、顶角为120°的等腰三角形OMN;
④两对角线和一边长都是4且另三边长相等的凸四边形PQRS;
⑤长为4且宽(小于长)与长的比是黄金分割比的黄金矩形WXYZ.
它们都不能折叠,现在将它们一一穿过一个内、外径分别为2.4、2.7的铁圆环.
我们规定:如果塑料板能穿过铁环内圈,则称为此板“可操作”;否则,便称为“不可操作”.
(1)证明:第④种塑料板“可操作”;求:从这五种塑料板中任意取两种至少有一种“不可操作”的概率.

查看答案和解析>>

有如图所示的五种塑料薄板(厚度不计):①两直角边分别为3、4的直角三角形ABC;
②腰长为4、顶角为36°的等腰三角形JKL;
③腰长为5、顶角为120°的等腰三角形OMN;
④两对角线和一边长都是4且另三边长相等的凸四边形PQRS;
⑤长为4且宽(小于长)与长的比是黄金分割比的黄金矩形WXYZ.
它们都不能折叠,现在将它们一一穿过一个内、外径分别为2.4、2.7的铁圆环.
我们规定:如果塑料板能穿过铁环内圈,则称为此板“可操作”;否则,便称为“不可操作”.
(1)证明:第④种塑料板“可操作”;求:从这五种塑料板中任意取两种至少有一种“不可操作”的概率.

查看答案和解析>>


同步练习册答案