点(2.4)向下平移5个单位长后其位置在第四象限 查看更多

 

题目列表(包括答案和解析)

如图,在平面直角坐标系中,每个小方格都是边长为1的正方形,有△ABC和△A1B1C1,其位置如图所示,
(1)将△ABC绕C点,按
逆(顺)
逆(顺)
时针方向旋转
90°(270°)
90°(270°)
时与△A1B1C1重合(直接填在横线上).
(2)在图中作出△A1B1C1关于原点O对称的△A2B2C2(不写作法).
(3)若将△ABC先向右平移2个单位,再向下平移2个单位后,只通过一次旋转变换就能与△A2B2C2重合吗?若能,请直接指出旋转中心的坐标、方向及旋转角的度数;若不能,请说明理由.

查看答案和解析>>

如图,在平面直角坐标系中,每个小方格都是边长为1的正方形,有△ABC和△A1B1C1,其位置如图所示,
(1)将△ABC绕C点,按______时针方向旋转______时与△A1B1C1重合(直接填在横线上).
(2)在图中作出△A1B1C1关于原点O对称的△A2B2C2(不写作法).
(3)若将△ABC先向右平移2个单位,再向下平移2个单位后,只通过一次旋转变换就能与△A2B2C2重合吗?若能,请直接指出旋转中心的坐标、方向及旋转角的度数;若不能,请说明理由.

查看答案和解析>>

1至图7的正方形霓虹灯广告牌ABCD都是20×20的等距网格(每个小方格的边长均为1个单位长),其对称中心为点O

如图1,有一个边长为6个单位长的正方形EFGH的对称中心也是点O,它以每秒1个单位长的速度由起始位置向外扩大(即点O不动,正方形EFGH经过一秒由6×6扩大为8×8;再经过一秒,由8×8扩大为10×10;……),直到充满正方形ABCD,再以同样的速度逐步缩小到起始时的大小,然后一直不断地以同样速度再扩大、再缩小.

另有一个边长为6个单位长的正方形MNPQ从如图1所示的位置开始,以每秒1个单位长的速度,沿正方形ABCD的内侧边缘按ABCDA移动(即正方形MNPQ从点P与点A重合位置开始,先向左平移,当点Q与点B重合时,再向上平移,当点M与点C重合时,再向右平移,当点N与点D重合时,再向下平移,到达起始位置后仍继续按上述方式移动).

正方形EFGH和正方形MNPQ从如图1的位置同时开始运动,设运动时间为x秒,它们的重叠部分面积为y个平方单位.

(1)请你在图2和图3中分别画出x2秒、18秒时,正方形EFGH和正方形MNPQ的位置及重叠部分(重叠部分用阴影表示),并分别写出重叠部分的面积;

(2)①如图4,当1x3.5时,求yx的函数关系式;

②如图5,当3.5x7时,求yx的函数关系式;

③如图6,当7x10.5时,求yx的函数关系式;

④如图7,当10.5x13时,求yx的函数关系式.

(3)对于正方形MNPQ在正方形ABCD各边上移动一周的过程,请你根据重叠部分面积y的变化情况,指出y取得最大值和最小值时,相对应的x的取值情况,并指出最大值和最小值分别是多少.(说明:问题(3)是额外加分题,加分幅度为14分)

查看答案和解析>>

按要求画图并填空:
(1)△ABC在如图1所示的平面直角坐标系中,将其平移后得△A′B′C′,若B的对应点B′的坐标是(4,1).
①在图中画出△A′B′C′; 
②此次平移可看作将△ABC向
平移了
2
2
个单位长度,再向
平移了
1
1
个单位长度得△A′B′C′;
③△A′B′C′的面积为
10
10

(2)已知:如图2,△ABC,请在图中作出它的角平分线BD,中线CE和BC边上的高AF.
(3)如图3,这是一个动物园游览示意图,试建立一个适当的平面直角坐标系描述这个动物园图中每个景点位置,(画出图形,并写出各景点的坐标). 

查看答案和解析>>

25、图1至图7的正方形霓虹灯广告牌ABCD都是20×20的等距网格(每个小方格的边长均为1个单位长),其对称中心为点O.
如图1,有一个边长为6个单位长的正方形EFGH的对称中心也是点O,它每秒1个单位长的速度由起始位置向外扩大(即点O不动,正方形EFGH经过一秒由6×6扩大为8×8;再经过一秒,由8×8扩大为10×10;…),直到充满正方形ABCD,再以同样的速度逐步缩小到起始时的大小,然后一直不断地以同样速度再扩大、再缩小.
另有一个边长为6个单位长的正方形MNPQ从如图1所示的位置开始,以每秒1个单位长的速度,沿正方形ABCD的内侧边缘按A?B?C?D?A移动(即正方形MNPQ从点P与点A重合位置开始,先向左平移,当点Q与点B重合时,再向上平移,当点M与点C重合时,再向右平移,当点N与点D重合时,再向下平移,到达起始位置后仍继续按上述方式移动).
正方形EFGH和正方形MNPQ从如图1的位置同时开始运动,设运动时间为x秒,它们的重叠部分面积为y个平方单位.
(1)请你在图2和图3中分别画出x为2秒、18秒时,正方形EFGH和正方形MNPQ的位置及重叠部分(重叠部分用阴影表示),并分别写出重叠部分的面积;
(2)①如图4,当1≤x≤3.5时,求y与x的函数关系式;
②如图5,当3.5≤x≤7时,求y与x的函数关系式;
③如图6,当7≤x≤10.5时,求y与x的函数关系式;
④如图7,当10.5≤x≤13时,求y与x的函数关系式.
(3)对于正方形MNPQ在正方形ABCD各边上移动一周的过程,请你根据重叠部分面积y的变化情况,指出y取得最大值和最小值时,相对应的x的取值情况,并指出最大值和最小值分别是多少.(说明:问题(3)是额外加分题,加分幅度为1~4分)

查看答案和解析>>


同步练习册答案