如下图, △AEC≌△BFD则∠A的对应角为 . 查看更多

 

题目列表(包括答案和解析)

26、探究题
如下图所示,已知平面内A、B、C、D、E五个点.
(1)按要求画出图形:
①画直线AC;
②画射线EA、EC;
③连接AB、BC、CD、DA.
(2)在(1)所画的图形中,任意找出一个锐角和一个钝角,并将它们分别表示出来:
锐角:
∠EAC

钝角:
∠AEC

(3)①用量角器量出四边形AECD的四个内角的度数,即∠DAE、∠AEC、∠ECD、∠CDA的度数分别为
50°,150°,60°,90°
,这四个内角的度数和为
360°

②用量角器量出四边形ABCD的四个内角的度数,即∠DAB、∠ABC、∠BCD、∠CDA的度数分别为
90°,70°,110°,90°
,这四个内角的度数和为
360°
.从以上的操作中,你有什么发现?(只需写出结论)

查看答案和解析>>

看图回答下面问题:
(1)如下图,已知:直线m∥n,A、B为直线n上两点,C、P为直线m上两点.请写出图中,△ABC和△ABP面积之间的数量关系;
精英家教网
(2)如下图,边长为6的正三角形ABC,P是BC边上一点,且PB=1,以PB为一边作正三角形PBD,求△ADC的面积;
精英家教网
(3)如下图,边长为6的正三角形ABC,P是BC边上一点,且PB=2,以PB为一边作正三角形PBD,求△ADC的面积;
精英家教网
(4)根据上述计算的结果,你发现了怎样的规律?提出自己的猜想并依据下图予以证明;
精英家教网
(5)如下图,有一块正三角形的草皮ABC,由于某种原因,需要将三角形草皮ABE移植到三角形的草皮AEC的右侧,成为一块新的三角形草皮ADC(A、E、D三点要在一条直线上),并保持其面积不变,请你画图说明如何确定点D的位置.
精英家教网

查看答案和解析>>

看图回答下面问题:
(1)如下图,已知:直线m∥n,A、B为直线n上两点,C、P为直线m上两点.请写出图中,△ABC和△ABP面积之间的数量关系;

(2)如下图,边长为6的正三角形ABC,P是BC边上一点,且PB=1,以PB为一边作正三角形PBD,求△ADC的面积;

(3)如下图,边长为6的正三角形ABC,P是BC边上一点,且PB=2,以PB为一边作正三角形PBD,求△ADC的面积;

(4)根据上述计算的结果,你发现了怎样的规律?提出自己的猜想并依据下图予以证明;

(5)如下图,有一块正三角形的草皮ABC,由于某种原因,需要将三角形草皮ABE移植到三角形的草皮AEC的右侧,成为一块新的三角形草皮ADC(A、E、D三点要在一条直线上),并保持其面积不变,请你画图说明如何确定点D的位置.

查看答案和解析>>

如下图,已知直线AB∥CD,求∠A+∠C与∠AEC的大小关系并说明理由.

查看答案和解析>>

看图回答下面问题:
(1)如下图,已知:直线m∥n,A、B为直线n上两点,C、P为直线m上两点.请写出图中,△ABC和△ABP面积之间的数量关系;

(2)如下图,边长为6的正三角形ABC,P是BC边上一点,且PB=1,以PB为一边作正三角形PBD,求△ADC的面积;

(3)如下图,边长为6的正三角形ABC,P是BC边上一点,且PB=2,以PB为一边作正三角形PBD,求△ADC的面积;

(4)根据上述计算的结果,你发现了怎样的规律?提出自己的猜想并依据下图予以证明;

(5)如下图,有一块正三角形的草皮ABC,由于某种原因,需要将三角形草皮ABE移植到三角形的草皮AEC的右侧,成为一块新的三角形草皮ADC(A、E、D三点要在一条直线上),并保持其面积不变,请你画图说明如何确定点D的位置.

查看答案和解析>>


同步练习册答案