1.三角形三个内角的比为1:2:3.求它的三个内角的度数? 查看更多

 

题目列表(包括答案和解析)

25、若一个三角形三个外角的度数之比为2:3:4,求与它们对应的三个内角的度数.

查看答案和解析>>

若一个三角形三个外角的度数之比为2:3:4,求与它们对应的三个内角的度数.

查看答案和解析>>

已知:如图所示,在△ABC中,BC=100,边BC上的高为50.在这个三角形内有一个内接矩形PQRS.
(1)若矩形的长PQ与宽PS的比是3:1,求这个矩形的长与宽;
(2)当这个矩形面积最大时,它的长与宽各是多少?

查看答案和解析>>

位似三角形

如果两个三角形不仅是相似三角形,而且每组对应点所在的直线都经过同一个点,那么这两个三角形叫做位似三角形,它们的相似比又称为位似比,这个点叫做位

似中心.利用三角形的位似可以将一个三形缩小或放大.

(1)

如图,点O是等边三角形PQR的中心,分别是OP、OQ、OR的中点,则△与△PQR是位似三角形.此时,△与△PQR的位似比、位似中心分别为

[  ]

A.

2;点P

B.

;点P

C.

2;点O

D.

;点O

(2)

如图,用下面的方法可以画AOB的内接等边三角形.阅读后证明相应问题.画法:

①在△AOB内画等边三角形CDE,使点C在OA上,点D在OB上;

②连结OE并延长,交AB于点,过点∥EC,交OA于点,作∥ED,交OB于点

③连结.则△是AOB的内接三角形.

求证:△是等边三角形.

查看答案和解析>>

如果两个三角形不仅是相似三角形,而且每组对应点所在的直线都经过同一

个点,那么这两个三角形叫做位似三角形,它们的相似比又称为位似比,这个点叫做

位似中心。利用三角形的位似可以将一个三角形缩小或放大。

1)选择:如图(1),点O是等边△PQR的中心,P’Q’R’分别是OPOQOR

中点,则△P’Q’R’与是△PQR是位似三角形,此时,△P’Q’R’与△PQR的位似比,位

似中心分别为                              

A. 2,点P      B. ,点P       C. 2,点O      D. ,点O

2)如图(2),用下面的方法可以画△AOB的内接等边三角形,阅读后证明相应的

问题。画法:①在△AOB内画等边三角形CDE,使点COA上,点DOB上;②

连结OE并延长,交AB于点E’,过点E’E’C’//EC,交OA于点C’,作E’D’//ED

OB于点D’;③连结C’D’,则△C’D’E’是△AOB的内接三角形。

求证:△CDE是等边三角形。

 

查看答案和解析>>


同步练习册答案