已知=0.则a+b的值是. A.-2 B.-1 C.0 D.2 查看更多

 

题目列表(包括答案和解析)

已知m、n是关于x的一元二次方程x2-3x+a=0的两个解,若(m-1)(n-1)=-6,则a的值为                        

查看答案和解析>>

已知ybx1成正比例,且比例系数是k(其中b为常数,k0)。若这个一次函

数的yx增大而增大,且点Pbk)与Q1,-)关于原点对称,则适合题意

kb的值为k________,b________。

 

查看答案和解析>>

观察可得最简公分母是(x+1)(x-1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.

【解答】

(2)方程的两边同乘(x+1)(x-1),得

2(x-1)+4=x2-1,

x2-2x-3=0,

(x-3)(x+1)=0,

解得x1=3,x2=-1,

检验:把x=3代入(x+1)(x-1)=8≠0,即x=3是原分式方程的解,

x=-1代入(x+1)(x-1)=0,即x=-1不是原分式方程的解,

则原方程的解为:x=3.

【点评】此题考查了实数的混合运算与分式方程的解法.此题难度不大,但注意掌握绝对值的性质、负指数幂的性质、零指数幂的性质以及特殊角的三角函数值,注意解分式方程一定要验根.

20.(本题满分5分)如图,已知△ABC,且∠ACB=90°。

(1)请用直尺和圆规按要求作图(保留作图痕迹,不写作法和证明);

①以点A为圆心,BC边的长为半径作⊙A;

②以点B为顶点,在AB边的下方作∠ABD=∠BAC.

(2)请判断直线BD与⊙A的位置关系(不必证明).

 


查看答案和解析>>

阅读理解:对于任意正实数a、b,∵≥0,∴≥0,

,只有当a=b时,等号成立.

结论:在(a、b均为正实数)中,若ab为定值p,则a+b≥,只有当a=b时,a+b有最小值

(1)根据上述内容,回答下列问题:现要制作一个长方形(或正方形),使镜框四周围成的面积为4,请设计出一种方案,使镜框的周长最小。

设镜框的一边长为m(m>0),另一边的为,考虑何时时周长最小。

∵m>0, (定值),由以上结论可得:

只有当m=       时,镜框周长有最小值是       

(2)探索应用:如图,已知A(-3,0),B(0,-4),P为双曲线(x>0)上的任意一点,过点P作PC⊥x轴于点C,PD⊥y轴于点D.求四边形ABCD面积的最小值,并说明此时△OAB与△OCD的关系.

 

查看答案和解析>>

阅读理解:对于任意正实数a、b,∵≥0,∴≥0,
,只有当a=b时,等号成立.
结论:在(a、b均为正实数)中,若ab为定值p,则a+b≥,只有当a=b时,a+b有最小值
(1)根据上述内容,回答下列问题:现要制作一个长方形(或正方形),使镜框四周围成的面积为4,请设计出一种方案,使镜框的周长最小。
设镜框的一边长为m(m>0),另一边的为,考虑何时时周长最小。
∵m>0,(定值),由以上结论可得:
只有当m=      时,镜框周长有最小值是      
(2)探索应用:如图,已知A(-3,0),B(0,-4),P为双曲线(x>0)上的任意一点,过点P作PC⊥x轴于点C,PD⊥y轴于点D.求四边形ABCD面积的最小值,并说明此时△OAB与△OCD的关系.

查看答案和解析>>


同步练习册答案