问. 查看更多

 

题目列表(包括答案和解析)

21、问题解决!
下表是某中学七年级(4)班的同学就“父母回家后,你会主动给他们倒一杯水吗”情况调查结果,请你按照要求用扇形统计图表示该调查结果.

(1)计算各类人数所占百分比及各个扇形圆心角的度数,并填入下表:

(2)制作扇形统计图,标上相应的类及百分比,并写上统计图的名称.

查看答案和解析>>

问题探索:
(1)已知一个正分数
n
m
(m>n>0),如果分子、分母同时增加1,分数的值是增大还是减小?请证明你的结论.
(2)若正分数
n
m
(m>n>0)中分子和分母同时增加2,3…k(整数k>0),情况如何?
(3)请你用上面的结论解释下面的问题:
建筑学规定:民用住宅窗户面积必须小于地板面积,但按采光标准,窗户面积与地板面积的比应不小于10%,并且这个比值越大,住宅的采光条件越好,问同时增加相等的窗户面积和地板面积,住宅的采光条件是变好还是变坏?请说明理由.

查看答案和解析>>

问题:如图,在正方形ABCD和正方形BEFG中,点A,B,E在同一条直线上,P是线段DF的中点,连接PG,PC.试探究PG与PC的位置关系及
PG
PC
的值.小聪同学的思路是:延长GP精英家教网交DC于点H,构造全等三角形,经过推理使问题得到解决.
请你参考小聪同学的思路,探究并解决下列问题:
(1)写出上面问题中线段PG与PC的位置关系及
PG
PC
的值;(要有具体过程)
(2)若将条件“正方形ABCD和正方形BEFG”改为“矩形ABCD≌矩形BEFG”其它条件不变,画图试探求线段PG与PC的关系.

查看答案和解析>>

24、问题背景:某课外学习小组在一次学习研讨中,得到了如下命题:
如图①,在正五边形ABCDE中,M、N分别是CD、DE上的点,BM与CN相交于点O,若CM=DN,则∠BON=108°.
该小组提出了一个大胆的猜想:如图②,在正五边形ABCDE中,M、N分别是DE、EA上的点,BM与CN相交于点O,若DM=EN,则∠BON=108°.
请问他们的猜想是否正确?若正确,请写出解答过程;若不正确,请说明理由.

查看答案和解析>>

[问题情境]
勾股定理是一条古老的数学定理,它有很多种证明方法,我国汉代数学家赵爽根据弦图,利用面积法进行证明,著名数学家华罗庚曾提出把“数形关系”(勾股定理)带到其他星球,作为地球人与其他星球“人”进行第一次“谈话”的语言.
[定理表述]
请你根据图1中的直角三角形,写出勾股定理内容;
[尝试证明]
以图1中的直角三角形为基础,可以构造出以a、b为底,以a+b为高的直角梯形(如图2),请你利用图2,验证勾股定理.
精英家教网

查看答案和解析>>


同步练习册答案