动手探索: (1)如图.我们可根据:阴影部分面积=大正方形面积-小正方形面积.得出阴影部分的面积= ; (2)我们将阴影部分沿虚线剪开.拼成长方形如图.则它的长是 ,宽是 ; (3)比较上面两种求法.可得到乘法公式: . 查看更多

 

题目列表(包括答案和解析)

如图,我们可将这个角表示为
∠α
∠α
∠O
∠O
∠AOB
∠AOB
,另外我们还可以用
阿拉伯数字
阿拉伯数字
来表示角.

查看答案和解析>>

如图,我们可将这个角表示为________或________或________,另外我们还可以用________来表示角.

查看答案和解析>>

小刚同学动手剪了如图①所示的正方形与长方形纸片若干张.观察与操作:
精英家教网
(1)他拼成如图②所示的正方形,根据四个小纸片的面积之和等于大正方形的面积,得到:(a+b)2=a2+2ab+b2,验证了完全平方公式;即多项式a2+2ab+b2分解因式后,其结果表示正方形的长(a+b)与宽(a+b)两个整式的积.
(2)当他拼成如图③所示的矩形,由面积相等又得到:a2+3ab+2b2=(a+2b)(a+b),即:多项式a2+3ab+2b2分解因式后,其结果表示矩形的长(a+2b)与宽(a+b)两个因式的积.利用上述纸片,
解决问题:
①请你依照小刚的方法,利用拼图把a2+4ab+3b2分解因式(画出图形,并写出其结果)
②探索:面积是2a2+5ab+3b2的矩形其长与宽分别是多少?(画出画形,并写出其结果)
③利用图形面积解释代数恒等式(a-b)2=(a+b)2-4ab(画图,并简要说明)

查看答案和解析>>

(2012•南京二模)情境一
我们知道:顶点在圆上,并且两边都和圆相交的角叫做圆周角.
我们还知道:①圆心角的度数等于与它所对的弧的度数,②同弧所对的圆周角相等,都等于该弧所对的圆心角的一半.由此,小明得到一个正确的结论:圆周角的度数等于它所对的弧的度数的一半.如图1,∠LMN=
1
2
LN

问题1  填空:如图1,如果
LN
的度数是80,那么∠LMN的度数是
40
40

情境二
小明把顶点在圆外,并且两边都和圆相交的角叫圆外角,并继续探索.
如图2,∵∠PTQ是△OPT的一个外角,
∴∠PTQ=∠O+∠P.
∴∠O=∠PTQ-∠P.
∵圆周角的度数等于它所对的弧的度数的一半(已在情境一中证明),
∴∠PTQ=
1
2
PQ
,∠P=
1
2
RT

∴∠O=∠PTQ-∠P=
1
2
PQ
-
1
2
RT
=
1
2
PQ
-
RT
).
经历了上述探索、证明过程,小明发现了“圆外角的度数等于它所夹的较大弧的度数减去较小弧的度数所得差的一半”这个正确结论.
问题2  填空:如图2,如果
PQ
=80°,
RT
=20°,那么∠O=
30
30
°.
问题3  类比情境二的内容,请你就角的顶点在圆内的情况进行探索.写出你的发现,并证明你的结论.

查看答案和解析>>

已知二次函数y=x2+px+q(p,q为常数,△=p2-4q>0)的图象与x轴相交于A(x1,0),B(x2,0)两点,且A,B两点间的距离为d,例如,通过研究其中一个函数y=x2-5x+6及图象(如图),可得出表中第2行的相关数据.
(1)在表内的空格中填上正确的数;
(2)根据上述表内d与△的值,猜想它们之间有什么关系?再举一个符合条件的二次函数,验证你的猜想;
(3)对于函数y=x2+px+q(p,q为常数,△=p2-4q>0)证明你的猜想.聪明的小伙伴:你能再给出一精英家教网种不同于(3)的正确证明吗?我们将对你的出色表现另外奖励3分.
y=x2+px+q  x1 x2 
y=x2-5x+6  -5  6  1  1
y=x2-
1
2
-
1
2
 
   
1
4
   
1
2
 
y=x2+x-2    -2   -2    3

查看答案和解析>>


同步练习册答案