a.b.c满足.求的最大值. 查看更多

 

题目列表(包括答案和解析)

已知x1、x2是关于x的方程(x-2)(x-m)=(p-2)(p-m)的两个实数根。
(1)求x1、x2的值;
(2)若x1、x2是某直角三角形的两直角边的长,问当实数m,p满足什么条件时,此时直角三角形的面积最大?并求出其最大值。

查看答案和解析>>

在平面直角坐标系中,ΔABC满足:∠C=90,AC=2,BC=1,点A、C分别在x轴、y轴上,当点A从原点开始在x轴的正半轴上运动时,点C随着在y轴上运动.
(1)当A在原点时,求原点O到点B的距离OB;
(2)当OA=OC时,求原点O到点B的距离OB;
(3)求原点O到点B的距离OB的最大值,并确定此时图形应满足什么条件

查看答案和解析>>

已知a、b、c为三个非负数,且满足3a+2b+c=5,2a+b-3c=1。
(1)求c的取值范围;
(2)设S=3a+b-7c,求S的最大值和最小值。

查看答案和解析>>

某县种植了一种无公害蔬菜,为了扩大生产规模,该县决定对这种蔬菜的种植实行政府补贴,规定每种植一亩这种蔬菜一次性补贴菜农若干元,随着补贴数额的不断增大,生产规模也不断增加,但每亩蔬菜的收益会相应降低,经调查,种植亩数y(亩)、每亩蔬菜的收益z(元)与补贴数额x(元)之间的关系如下表:

x(元)

0

100

200

300

y(亩)

800

1600

2400

3200

z(元)

3000

2700

2400

2100

(1)分别求出政府补贴政策实施后种植亩数y、每亩蔬菜的收益z与政府补贴数额x之间的函数关系式;(2)要使全县这种蔬菜的总收益w(元)最大,政府应将每亩补贴数额x定为多少?并求出总收益w的最大值和此时种植亩数。
(3)在取得最大收益的情况下,为了满足市场需求,用不超过70亩的土地对这种蔬菜进行反季节的种植,为此需修建一些蔬菜大棚,修建大棚要用的支架、塑料膜等材料平均每亩的费用为650元,此外还要购置喷灌设备,这项费用(元)与大棚面积(亩)的平方成正比例,比例系数为25,这样,修建大棚后的这部分土地每亩的平均收益比没修前增加了2000元,在扣除修建费后总共增加了85000元.,求修建了多少亩蔬菜大棚?(结果精确到个位,参考数据:1.414)

查看答案和解析>>

如图,已知抛物线y = ax2 + bx-4与x轴交于A、B两点,与y轴交于C点,经过A、B、C三点的圆的圆心M(1,m)恰好在此抛物线的对称轴上,⊙M的半径为
(1)求m的值及抛物线的解析式;
(2)点P是线段上的一个动点,过点P作PN∥,交于点,连接CP,当的面积最大时,求点P的坐标;
(3)点在(1)中抛物线上,点为抛物线上一动点,在轴上是否存在点,使以为顶点的四边形是平行四边形,如果存在,直接写出所有满足条件的点的坐标,若不存在,请说明理由。

查看答案和解析>>


同步练习册答案