是方程组的解.这个方程是下列中的( ) A. 查看更多

 

题目列表(包括答案和解析)

下列是用代入法解方程组的开始步骤,其中最简单、正确的解法是

[  ]

A.由①得y=3x-2③,把③代入②得,3x=11-2(3x-2)

B.由①得x=③,把③代入②得,3×=11-2y

C.由②得y=③,把③代入①得,3x-=2

D.把②代入①得11-2y-y=2.(这种方法是把3x看做一个整体)

查看答案和解析>>

列方程解应用题:
(1)从甲地到乙地有两条公路:一条是全长600km的普通公路,另一条是全长480km的高速公路.某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需要的时间.
(2)花苑区在一项市政工程招标时,接到甲、乙两个工程队的投标书,每施工一天,需付甲工程队工程款1.5万元,付乙工程队工程款1.1万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:
(A)甲队单独完成这项工程,刚好如期完成;
(B)乙队单独完成这项工程要比规定工期多用5天;
(C)▓▓▓▓▓,剩下的工程由乙队单独做,也正好如期完工.
一同学设规定的工期为x天,根据题意列出方程:4(
1
x
+
1
x+5
)+
x-4
x+5
=1

①请你将方案(C)中被墨水污染的部分补充出来:
甲、乙两队合作4天
甲、乙两队合作4天

②施工方案
B
B
最节省工程款.试说明你的理由.
③如果你是工程领导小组的组长,为了节省工程款,同时又能如期完工,你将选择哪一种方案?说明理由.

查看答案和解析>>

阅读下列解题过程,借鉴其中一种方法解答后面给出的试题:    
问题:某人买13 个鸡蛋,5 个鸭蛋、9 个鹅蛋共用去了9.25 元;买2 个鸡蛋,4 个鸭蛋、3 个鹅蛋共用去了3.20 元,试问只买鸡蛋、鸭蛋、鹅蛋各一个共需多少元。
分析:设买鸡蛋,鸭蛋、鹅蛋各一个分别需x 、y 、z 元,则需要求x+y+z 的值,
由题意,知;   
 视x为常数,将上述方程组看成是关于y、z的二元一次方程组,化“三元”为“二元”、化“二元”为“一元”从而获解。
解法1:视x为常数,依题意得
解这个关于y、z的二元一次方程组得  
于是x+y+z=x+0.05+x+1-2x=1.05。
评注:也可以视z为常数,将上述方程组看成是关于x、y的二元一次方程组。
解答方法同上,你不妨试试.分析:视x+y+z为整体,由(1)、(2)恒等变形得
5(x+y+x)+4(2x+z)=9.25,4(x+y+z)-(2x+z)=3.20。    
解法2:设x+y+z=a,2x+z=b,代入(1)、(2)可以得到如下关于a、b的二元一次方程组
由⑤+4×⑥,得21a=22.05,a=1.05。
评注:运用整体的思想方法指导解题,视x+y+z,2x+z为整体,
令a=x+y+z,b=2x+z,代人①、②将原方程组转化为关于a、b的二元一次方程组从而获解。
请你运用以上介绍的任意一种方法解答如下数学竞赛试题:购买五种教学用具A1、A2、A3、A4、A5的件数和用钱总数列成下表:
那么,购买每种教学用具各一件共需多少元?

查看答案和解析>>

阅读下列解题过程,借鉴其中一种方法解答后面给出的试题:

    问题:某人买13个鸡蛋,5个鸭蛋、9个鹅蛋共用去了9.25元;买2个鸡蛋,4个鸭蛋、3个鹅蛋共用去了3.20元.试问只买鸡蛋、鸭蛋、鹅蛋各一个共需多少元.

    分析:设买鸡蛋,鸭蛋、鹅蛋各一个分别需x、y、z元,则需要求x+y+z的值.由题意,知

    视为常数,将上述方程组看成是关于y、z的二元一次方程组,化“三元”为“二元”、化“二元”为“一元”从而获解.

解法1:视为常数,依题意得

解这个关于y、z的二元一次方程组得

  于是

    评注:也可以视z为常数,将上述方程组看成是关于的二元一次方程组,解答方法同上,你不妨试试.

分析:视为整体,由(1)、(2)恒等变形得

    解法2:设,代入(1)、(2)可以得到如下关于的二元一次方

程组

由⑤+4×⑥,得

    评注:运用整体的思想方法指导解题.视为整体,令,代人①、②将原方程组转化为关于的二元一次方程组从而获解.

    请你运用以上介绍的任意一种方法解答如下数学竞赛试题:

购买五种教学用具A1、A2、A3、A4、A5的件数和用钱总数列成下表:

      品名

次数

A1

A2

A3

A4

A5

总钱数

第一次购

买件数

l

3

4

5

6

1992

第二次购   买件数

l

5

7

9

11

2984

  那么,购买每种教学用具各一件共需多少元?

查看答案和解析>>

(1)大桥中学初三学生对迎新文艺汇演的满意程度进行测评,评定分A、B、C、D四个等第,为了解评定情况,小明随机调查初三30名学生的学号及他们的满意度等第,结果如下:

学号
3002
3015
3039
3068
3075
3115
3132
3145
3156
3178
等第

B



A

B
A

学号
3209
3233
3251
3260
3279
3295
3313
3336
3341
3387
等第


A


B




学号
3399
3416
3452
3488
3493
3499
3501
3538
3567
3583
等第
A









注:等第A,B,C,D分别代表满意、较满意、一般、不满意.
①请在下面给出的图中画出这30名学生对文艺汇演满意程度等第的频数条形统计图,并计算其中等第达到较满意以上(含较满意)的频率;

②已知初三学生学号是从3001开始,按由小到大顺序排列的连续整数,请你计算这30名学生学号的中位数,并运用中位数的知识来估计这次初三学生的满意度等第达到较满意以上(含较满意)的人数;
(2)迎新文艺汇演组委会准备邀请所有参与表演的学生去嬉戏谷游玩,由于项目较多,准备上午先从 A.雷神之怒、B.龙行天下、C.撕裂星空、D.云之秘境中随机选择三个项目,下午再从E.天际骇客、F.激流勇进、G.魔兽天途中随机选择二个项目游玩,
①请用列举法或树形图说明当天学生们符合上述条件的所有可能的选择方式.(用字母表示)
②在①的选择方式中,求学生恰好上午选中A雷神之怒,同时下午选中G天际骇客这两个项目的概率.

查看答案和解析>>


同步练习册答案