如图,在ΔABC中,AC边上的垂直平分线交AC于点E, 已知AB=3,AC=7,BC=9,则ΔABD的周长为: A.12 B.11 C.15 D.10 查看更多

 

题目列表(包括答案和解析)

如图,△ABC中,∠C=90°,AC=8cm,BC=6cm,点P、Q分别在边AC、BC上,其中CQ=a,CP=b.过点P作AC的垂线l交边AB于点R,作△PQR关于直线l对称的图形,得到△PQ′R,我们把这个操作过程记为CZ[a,b].
(1)若CZ[a,b]使点Q′恰为AB的中点,则b=
 
;当操作过程为CZ[3,4]时,△PQR与△PQ′R组合而成的轴对称图形的形状是
 

(2)若a=b,则:
①当a为何值时,点Q′恰好落在AB上?
②若记△PQ′R与△PAR重叠部分的面积为S(cm2),求S与a的函数关系式,并写出a的取值范围;
(3)当四边形PQRQ′为平行四边形时,求四边形PQRQ′面积最大值.

查看答案和解析>>

如图,△ABC中,AB=BC=2,∠ABC=45°,CD⊥AB,BE⊥AC,垂足分别为D、E,BE与CD相交于点F,H是BC边的中点,连接DH与BE相交于点G.以点H为原点,BC所在直线为x轴建立如图所示的平面直角坐标系.
(1)一条抛物线经过D、B、C三点,求这条抛物线的解析式;
(2)猜想:线段BG与CE之间存在数量关系BG=数学公式CE吗?若存在,请证明;若不存在,请说明理由;
(3)将△DHC进行平移、旋转、翻折(无任何限制),使它与△BDH拼成特殊四边形(面积不变).则(1)中抛物线上是否存在点P,使它成为所拼特殊四边形异于B、H、D三点的顶点?若存在,请求出P点坐标;若不存在,请说明理由.

查看答案和解析>>

如图,△ABC中,AB=BC=2,∠ABC=45°,CD⊥AB,BE⊥AC,垂足分别为D、E,BE与CD相交于点F,H是BC边的中点,连接DH与BE相交于点G.以点H为原点,BC所在直线为x轴建立如图所示的平面直角坐标系.
(1)一条抛物线经过D、B、C三点,求这条抛物线的解析式;
(2)猜想:线段BG与CE之间存在数量关系BG=CE吗?若存在,请证明;若不存在,请说明理由;
(3)将△DHC进行平移、旋转、翻折(无任何限制),使它与△BDH拼成特殊四边形(面积不变).则(1)中抛物线上是否存在点P,使它成为所拼特殊四边形异于B、H、D三点的顶点?若存在,请求出P点坐标;若不存在,请说明理由.

查看答案和解析>>

如图,直线y=-
3
4
x+6
与x轴、y轴分别相交于A、C两点;分别过A、C两点作x轴、y轴的垂线精英家教网相交于B点,P为BC边上一动点.
(1)求C点的坐标;
(2)点P从点C出发沿着CB以每秒1个单位长度的速度向点B匀速运动,过点P作PE∥AC交AB于B,设运动时间为t秒,用含t的代数式表示△PBE的面积S;
(3)在(2)的条件下点P的运动过程中,将△PBE沿着PE折叠(如图所示),点B在平面内的落点为点D.当△PDE与△ABC重叠部分的面积等于
3
2
时,试求出P点的坐标.

查看答案和解析>>

如图,已知在平面直角坐标系中,直角梯形ABCD,AB∥CD,AD=CD,∠ABC=90°,A、B在x轴上,点D在y轴上,若tan∠OAD=
4
3
,B点的坐标为(5,0).
(1)求直线AC的解析式;
(2)若点Q、P分别从点C、A同时出发,点Q沿线段CA向点A运动,点P沿线段AB向点B运动,Q点的速度为每秒
5
个单位长度,P点的速度为每秒2个单位长度,设运动时间为t秒,△PQE的面积为S,求S与t的函数关系式(请直接写出自变量t的取值范围);
(3)在(2)的条件下,过P点作PQ的垂线交直线CD于点M,在P、Q运动的过程中,是否在平面内有一点N,使四边形QPMN为正方形?若存在,求出N点的坐标;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案