解:在△ABC和△ACD中 ∠B =∠ ∠A =∠ AE = ∴ △ABC≌△ACD ∴ AB =AC22.如图.在△ABC中.AE是∠BAC的角平分线.AD是BC边上的高.且∠B = 40º, ∠C = 60º, 求∠EAD的度数. 查看更多

 

题目列表(包括答案和解析)

课外兴趣小组活动时,老师提出了如下问题:

如图,△ABC中,若AB=5,AC=3,求BC边上的中线AD的取值范围.

小明在组内经过合作交流,得到了如下的解决方法:延长AD到E,使得DE=AD,再连结BE(或将△ACD绕点D逆时针旋转180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形的三边关系可得2<AE<8,则1<AD<4.

感悟:解题时,条件中若出现“中点”“中线”字样,可以考虑构造以中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同一个三角形中.

(2)问题解决:

受到(1)的启发,请你证明下面命题:如图,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连结EF.

①求证:BE+CF>EF

②若∠A=90°,探索线段BE、CF、EF之间的等量关系,并加以证明.

(3)问题拓展:

如图,在四边形ABDC中,∠B+∠C=180°,DB=DC,∠BDC=120°,以D为顶点作一个60°角,角的两边分别交AB、AC于E、F两点,连结EF,探索线段BE、CF、EF之间的数量关系,并加以证明.

查看答案和解析>>

定义:我们把三角形被一边中线分成的两个三角形叫做“友好三角形”

性质:如果两个三角形是“友好三角形”,那么这两个三角形的面积相等,

理解:如图①,在△ABC中,CD是AB边上的中线,那么△ACD和△BCD是“友好三角形”,并且S△ACD=S△BCD

应用:如图②,在矩形ABCD中,AB=4,BC=6,点E在AD上,点F在BC上,AE=BF,AF与BE交于点O,

(1)求证:△AOB和△AOE是“友好三角形”;

(2)连接OD,若△AOE和△DOE是“友好三角形”,求四边形CDOF的面积,

探究:在△ABC中,∠A=30°,AB=4,点D在线段AB上,连接CD,△ACD和△BCD是“友好三角形”,将△ACD沿CD所在直线翻折,得到△CD与△ABC重合部分的面积等于△ABC面积的,请直接写出△ABC的面积.

查看答案和解析>>


同步练习册答案