教材116页 4题 查看更多

 

题目列表(包括答案和解析)

课本习题研究:
(1)课本116页第12题题目内容是这样的:正方形ABCD的对角线交于点O,点O又是另一个正方形A′B′C′O的一个顶点.如果两个正方形的边长相等,那么正方形A′B′C′O绕点O无论怎样旋转,两个正方形重叠部分的面积,总等于一个正方形面积的
 
.请你根据对课本习题的研究,填写(2)题的答案.
(2)如图,将n个边长都为1cm的正方形按如图所示摆放,点A1、A2、…、An,分别是正方形的中心,则n个这样的正方形重叠部分的面积和为
 
cm2
精英家教网

查看答案和解析>>

4、创新题:教材中的变型题
(P137,习题4.5第1题)按图所示,所示的方法将几何体切开,所得的三个截面有没有互相平行的线段?如果有,填上字母表示出来.

查看答案和解析>>

一透明的敞口正方体容器ABCD装有一些液体,棱AB始终在水平桌面上,容器底部的倾斜角为α(∠CBE=α,如图①所示).

探究如图①,液面刚好过棱CD,并与棱B交于点Q,此时液体的形状为直三棱柱,其三视图及尺寸如图②所示.解决问题:

(1)CQBE的位置关系是________,BQ的长是________dm;

(2)求液体的体积;(参考算法:直棱柱体积V液=底面积SBCQ×高AB)

(3)求α的度数.(注:sin49°=cos41°=,tan37°=)

拓展在图①的基础上,以棱AB为轴将容器向左或向右旋转,但不能使液体溢出,图③或图④是其正面示意图.若液面与棱CCB交于点P,设PCxBQy.分别就图③和图④求yx的函数关系式,并写出相应的α的范围.

[温馨提示:下页还有题!]

延伸在图④的基础上,于容器底部正中间位置,嵌入一平行于侧面的长方形隔板(厚度忽略不计),得到图⑤,隔板高NM=1 dm,BMCMNMBC.继续向右缓慢旋转,当α=60°时,通过计算,判断溢出容器的液体能否达到4 dm3

查看答案和解析>>

九年级上册的教材第118页有这样一道习题:
“在一块三角形余料ABC中,它的边BC=120mm,高线AD=80mm.要把它加工成正方形零件(如图),使正方形的一边在BC上,其余两个顶点分别在AB,AC上.问加工成的正方形零件的边长为多少mm?”
(1)请你解答上题;
(2)若将上题图中的正方形PQMN改为矩形,其余条件不变,求矩形PQMN的面积S的最大值;
(3)我们把上面习题中的正方形PQMN叫做“BC边上的△ABC的内接正方形”,若在习题的条件下,又知AB=150mm,AC=100mm,请分别写出AB边上的△ABC的内接正方形的边长和AC边上的△ABC的内接正方形的边长(不必写出过程,只要直接写出答案即可,结果精确到1mm);
(4)结合第(1)、(3)题,若三角形的三边长分别为a,b,c,各边上的高分别为ha,hb,hc,要使a边上的三角形内接正方形的面积最大,请写出a与ha必须满足的条件(不必写出过程).

查看答案和解析>>

理解与应用
小明在学习相似三角形时,在北京市义务教育课程改革实验教材第17册书,第37页遇到这样一道题:
如图1,在△ABC中,P是边AB上的一点,联结CP.要使△ACP∽△ABC,还需要补充的一个条件是
 
,或
 

请回答:
(1)小明补充的条件是
 
,或
 

(2)请你参考上面的图形和结论,探究、解答下面的问题:如图2,在△ABC中,∠A=60°,AC2=AB2+AB•BC.求∠B的度数.
精英家教网

查看答案和解析>>


同步练习册答案