如图.将△ABC沿AC方向平移至△DEF的位置.已知AF=9cm,CD=1cm,则AD= 9如图.已知∠AOC=∠BOD=900.∠BOC=500.则∠AOD= . 查看更多

 

题目列表(包括答案和解析)

如图△ABC中,∠C=90º,∠A=30º,BC=5cm;△DEF中,∠D=90º,∠E=45º,DE=3cm.现将△DEF的直角边DF与△ABC的斜边AB重合在一起,并将△DEF沿AB方向移动(如图).在移动过程中,D、F两点始终在AB边上(移动开始时点D与点A重合,一直移动至点F与点B重合为止).

(1)在△DEF沿AB方向移动的过程中,有人发现:E、B两点间的距离随AD的变化而变化,现设AD="x,BE=y," 请你写出之间的函数关系式及其定义域.
(2)请你进一步研究如下问题:
问题①:当△DEF移动至什么位置,即AD的长为多少时,E、B的连线与AC平行?
问题②:在△DEF的移动过程中,是否存在某个位置,使得?如果存在,求出AD的长度;如果不存在,请说明理由.
问题③:当△DEF移动至什么位置,即AD的长为多少时,以线段AD、EB、BC的长度为三边长的三角形是直角三角形?

查看答案和解析>>

如图△ABC中,∠C=90°,∠A=30°,B C=5cm;△DEF中∠D=90°,∠E=45°,DE=3cm.现将△DEF的直角边DF与△ABC的斜边AB重合在一起,并将△DEF沿AB方向移动(如图).在移动过程中,DF两点始终在AB边上(移动开始时点D与点A重合,一直移动至点F与点B重合为止)

(1) 当△DEF移动至什么位置,即AD的长为多少时,EB的连线与AC平行.

(2) 在△DEF的移动过程中,是否存在某个位置,使得∠EBD=22.5°?如果存在,求出AD的长度;如果不存在,请说明理由.

 

查看答案和解析>>

如图△ABC中,∠C=90°,∠A=30°,B C=5cm;△DEF中∠D=90°,∠E=45°,DE=3cm.现将△DEF的直角边DF与△ABC的斜边AB重合在一起,并将△DEF沿AB方向移动(如图).在移动过程中,D、F两点始终在AB边上(移动开始时点D与点A重合,一直移动至点F与点B重合为止).

(1) 当△DEF移动至什么位置,即AD的长为多少时,E、B的连线与AC平行.
(2) 在△DEF的移动过程中,是否存在某个位置,使得∠EBD=22.5°?如果存在,求出AD的长度;如果不存在,请说明理由.

查看答案和解析>>

(2014•宝山区一模)如图△ABC中,∠C=90°,∠A=30°,BC=5cm;△DEF中,∠D=90°,∠E=45°,DE=3cm.现将△DEF的直角边DF与△ABC的斜边AB重合在一起,并将△DEF沿AB方向移动(如图).在移动过程中,D、F两点始终在AB边上(移动开始时点D与点A重合,一直移动至点F与点B重合为止).
(1)在△DEF沿AB方向移动的过程中,有人发现:E、B两点间的距离随AD的变化而变化,现设AD=x,BE=y,请你写出y与x之间的函数关系式及其定义域.
(2)请你进一步研究如下问题:
问题①:当△DEF移动至什么位置,即AD的长为多少时,E、B的连线与AC平行?
问题②:在△DEF的移动过程中,是否存在某个位置,使得∠EBD=22.5°?如果存在,求出AD的长度;如果不存在,请说明理由.
问题③:当△DEF移动至什么位置,即AD的长为多少时,以线段AD、EB、BC的长度为三边长的三角形是直角三角形?

查看答案和解析>>

如图1,一副直角三角板满足AB=BC=10,∠ABC=∠DEF=90°,∠EDF=30°,将三角板DEF的直角边EF放置于三角板ABC的斜边AC上,且点E与点A重合.
▲操作一:固定三角板ABC,将三角板DEF沿AC方向平移,使直角边ED刚好过B点,如图2所示;
[探究一]三角板DEF沿A→C方向平移的距离为
5
2
5
2

▲操作二:将三角板DEF沿A→C方向平移至一定位置后,再将三角板DEF绕点E旋转,并使边DE与边AB交于点P,边EF与边BC交于点Q;
[探究二]在旋转过程中,
(1)如图3,当
CE
EA
=1时,请判断下列结论是否正确(用“√”或“×”表示):
①EP=EQ;

②四边形EPBQ的面积不变,且是△ABC面积的一半;

(2)如图4,当
CE
EA
=2时,EP与EQ满足怎样的数量关系?并说明理由.
(3)根据你对(1)、(2)的探究结果,试写出当
CE
EA
=m时,EP与EQ满足的数量关系式为
EQ=mEP
EQ=mEP
;(直接写出结论,不必证明)

查看答案和解析>>


同步练习册答案