如图18.已知三角形ABC.求证:∠A+∠B+∠C=1800. 分析:通过画平行线.将∠A.∠B.∠C作等角代换.使各角之和恰为一平角.依辅助线不同而得多种证法. 证法1:如图19.延长BC到D.过C画CE∥BA ∵BA∥CE ∴∠B=∠1.∠A=∠2(两直线平行.同位角.内错角相等) 又∵∠BCD=∠BCA+∠2+∠1=1800 ∴∠A+∠B+∠ACB=1800 如图20.过BC上任一点F.画FH∥AC.FG∥AB.这种添加辅助线的方法能证明∠A+∠B+∠C=1800吗?请你试一试. 查看更多

 

题目列表(包括答案和解析)

如图1,已知三角形纸片ABC,AB=AC,∠A=50°,将其折叠,如图2,使点A与点B重合,折痕为ED,点E,D分别在AB,AC上,求∠DBC的大小.

查看答案和解析>>

(2012•房山区一模)阅读下面材料:
如图1,已知线段AB、CD相交于点O,且AB=CD,请你利用所学知识把线段AB、CD转移到同一三角形中.
小强同学利用平移知识解决了此问题,具体做法:
如图2,延长OD至点E,使DE=CO,延长OA至点F,使AF=OB,连接EF,则△OEF为所求的三角形.
请你仔细体会小强的做法,探究并解答下列问题:
如图3,长为2的三条线段AA′,BB′,CC′交于一点O,并且∠B′OA=∠C′OB=∠A′OC=60°;
(1)请你把三条线段AA′,BB′,CC′转移到同一三角形中.(简要叙述画法)
(2)连接AB′、BC′、CA′,如图4,设△AB′O、△BC′O、△CA′O的面积分别为S1、S2、S3,则S1+S2+S3
3
(填“>”或“<”或“=”).

查看答案和解析>>

如图1,已知线段AB=8,点C是AB上的一动点(不包括A、B),在AB同侧作两个等边三角形ACD和BCE,连DE,点P、F分别是DE和BE的中点,连接AF,分别交DC、CE于G、H.
(1)写出图中所有的相似三角形(除等边三角形ACD和BCE外);
(2)当点C在AB中点时,如图2,求CP的长及AG:GH:HF;
(3)点M、N是线段AB上两点,且AM=BN=2,当点C从点M向点N运动时,求点P所经过的路径长.

查看答案和解析>>

如图1,已知三角形ABC,求证:∠A+∠B+∠C=180°.
分析:通过画平行线,将∠A、∠B、∠C作等角代换,使各角之和恰为一个平角,依辅助线不同而得多种证法.

证法1:如图2,延长BC到D,过点C画CE∥BA
∵BA∥CE(作图所知)
∴∠B=
∠1
∠1
(两直线平行,同位角相等),
∠A=∠2  (
两直线平行,内错角相等
两直线平行,内错角相等
 ).
又∵∠BCD=∠BCA+∠2+∠1=180°(平角的定义)
∴∠A+∠B+∠ACB=180°(等量代换)
(1)请补全上述证明过程.
(2)如图3,过线段BC上任一点F(点B、C除外),画FH∥AC,FG∥AB,这种添加辅助线的方法也能证明∠A+∠B+∠C=180°.请完成说理过程.
证法2:如图3,过线段BC上任一点F(点B、C除外),画FH∥AC,FG∥AB.

查看答案和解析>>

9、如图1,已知线段AB和直线m,点A在直线m上,以AB为一边画等腰△ABC,且使点C在直线m上,这样的等腰三角形最多有(  )

查看答案和解析>>


同步练习册答案