当正整数m= 时.代数式的值也是正整数. 查看更多

 

题目列表(包括答案和解析)

有一个算式分子都是整数,满足
(  )
3
+
(  )
5
+
(  )
7
≈1.16,那么你能算出他们的分子依次是哪些数吗?
在我们的教科书中选取了一些具体值并将它们代入要解的一元二次方程中,大致估计出一元二次方程解的范围,再在这个范围内逐步加细赋值,进而逐步估计出一元二次方程的近似解.下面介绍另外一种估计一元二次方程近似解的方法,以方程x2-3x-1=0为例,因为x≠0,所以先将其变形为x=3+
1
x
,用3+
1
x
代替x,得x=3+
1
x
=3+
1
3+
1
x
.反复若干次用3+
1
x
代替x,就得到x=3+
1
3+
1
3+
1
3+
1
3+
1
x
形如上式右边的式子称为连分数.
可以猜想,随着替代次数的不断增加,右式最后的
1
x
对整个式子的值的影响将越来越小,因此可以根据需要,在适当时候把
1
x
忽略不计,例如,当忽略x=3+
1
x
中的
1
x
时,就得到x=3;当忽略x=3+
1
3+
1
x
中的
1
x
时,就得到x=3+
1
3
;如此等等,于是可以得到一系列分数;
3,3+
1
3
,3+
1
3+
1
3
,3+
1
3+
1
3
1
3
,…,即3,
10
3
=3.333…,
33
10
≈3.3.
109
33
=3.303 03…,….
可以发现它们越来越趋于稳定,事实上,这些数越来越近似于方程x2-3x-1=0的正根,而且它的算法也很简单,就是以3为第一个近似值,然后不断地求倒数,再加3而已,在计算机技术极为发达的今天,只要编一个极为简单的程序,计算机就能很快帮你算出它的多个近似值.

查看答案和解析>>

有一个算式分子都是整数,满足≈1.16,那么你能算出他们的分子依次是哪些数吗?
在我们的教科书中选取了一些具体值并将它们代入要解的一元二次方程中,大致估计出一元二次方程解的范围,再在这个范围内逐步加细赋值,进而逐步估计出一元二次方程的近似解.下面介绍另外一种估计一元二次方程近似解的方法,以方程x2-3x-1=0为例,因为x≠0,所以先将其变形为x=3+,用3+代替x,得x=3+=3+.反复若干次用3+代替x,就得到x=形如上式右边的式子称为连分数.
可以猜想,随着替代次数的不断增加,右式最后的对整个式子的值的影响将越来越小,因此可以根据需要,在适当时候把忽略不计,例如,当忽略x=3+中的时,就得到x=3;当忽略x=3+中的时,就得到x=3+;如此等等,于是可以得到一系列分数;
3,3+,3+,3+,…,即3,=3.333…,≈3.3.=3.303 03…,….
可以发现它们越来越趋于稳定,事实上,这些数越来越近似于方程x2-3x-1=0的正根,而且它的算法也很简单,就是以3为第一个近似值,然后不断地求倒数,再加3而已,在计算机技术极为发达的今天,只要编一个极为简单的程序,计算机就能很快帮你算出它的多个近似值.

查看答案和解析>>

如图,一张边长为20cm正方形硬纸板,把它的四个角都剪去一个边长为xcm的小正方形,然后把它折成一个无盖的长方体,设长方体的容积为Vcm3,请回答下列问题:
(1)若用含有x的代数式表示V,则V=______.
(2)根据(1)中结果,填写下表:
x(cm)1234567
V(cm3324512500384252
(3)观察(2)中表格,容积V的值是否随x值的增大而增大?此时当x取什么整数值时,容积V的值最大?
(4)课后小英同学继续对这个问题作了以下探究:
当x=3.2cm时,V=591.872cm3;当x=3.3cm时,V=592.548cm3
当x=3.4cm时,V=592.416cm3;当x=3.5cm时,V=591.5cm3
小英同学发现x的取值一定介于3.3cm~3.4cm之间,估计x的取值还能更精确些,小英再计算x=3.3cm,3.33cm,3.333cm,3.3333cm…时,发现容积还在逐渐增大.现请你也观察(4)中数据变化,能否推测x可以取到哪一个定值,容积V的值最大?(直接写出即可)

查看答案和解析>>

如图,一张边长为20cm正方形硬纸板,把它的四个角都剪去一个边长为xcm的小正方形,然后把它折成一个无盖的长方体,设长方体的容积为Vcm3,请回答下列问题:
(1)若用含有x的代数式表示V,则V=
x(20-2x)2
x(20-2x)2

(2)根据(1)中结果,填写下表:
x(cm) 1 2 3 4 5 6 7
V(cm3 324 512 500 384 252
(3)观察(2)中表格,容积V的值是否随x值的增大而增大?此时当x取什么整数值时,容积V的值最大?
(4)课后小英同学继续对这个问题作了以下探究:
当x=3.2cm时,V=591.872cm3;当x=3.3cm时,V=592.548cm3
当x=3.4cm时,V=592.416cm3;当x=3.5cm时,V=591.5cm3
小英同学发现x的取值一定介于3.3cm~3.4cm之间,估计x的取值还能更精确些,小英再计算x=3.3cm,3.33cm,3.333cm,3.3333cm…时,发现容积还在逐渐增大.现请你也观察(4)中数据变化,能否推测x可以取到哪一个定值,容积V的值最大?(直接写出即可)

查看答案和解析>>


同步练习册答案