能证明两个直角三角形全等的公理有 . . . . . 查看更多

 

题目列表(包括答案和解析)

教材第九章中探索乘法公式时,设置由图形面积的不同表示方法验证了乘法公式.我国著名的数学家赵爽,早在公元3世纪,就把一个矩形分成四个全等的直角三角形,用四个全等的直角三角形拼成了一个大的正方形(如图1),这个图形称为赵爽弦图,验证了一个非常重要的结论:在直角三角形中两直角边a、b与斜边c满足关系式a2+b2=c2,称为勾股定理.

(1)爱动脑筋的小明把这四个全等的直角三角形拼成了另一个大的正方形(如图2),也能验证这个结论,请你帮助小明完成验证的过程.
(2)小明又把这四个全等的直角三角形拼成了一个梯形(如图3),利用上面探究所得结论,求当a=3,b=4时梯形ABCD的周长.(3)如图4,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.请在图中画出△ABC的高BD,利用上面的结论,求高BD的长.

查看答案和解析>>

教材第九章中探索乘法公式时,设置由图形面积的不同表示方法验证了乘法公式.我国著名的数学家赵爽,早在公元3世纪,就把一个矩形分成四个全等的直角三角形,用四个全等的直角三角形拼成了一个大的正方形(如图1),这个图形称为赵爽弦图,验证了一个非常重要的结论:在直角三角形中两直角边a、b与斜边c满足关系式a2+b2=c2,称为勾股定理.

(1)爱动脑筋的小明把这四个全等的直角三角形拼成了另一个大的正方形(如图2),也能验证这个结论,请你帮助小明完成验证的过程.
(2)小明又把这四个全等的直角三角形拼成了一个梯形(如图3),利用上面探究所得结论,求当a=3,b=4时梯形ABCD的周长.(3)如图4,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.请在图中画出△ABC的高BD,利用上面的结论,求高BD的长.

查看答案和解析>>

感知:利用图形中面积的等量关系可以得到某些数学公式.例如,根据图①甲,我们可以得到两数和的平方公式:,根据图①乙能得到的数学公式是                  

拓展:图②是由四个完全相同的直角三角形拼成的一个大正方形,直角三角形的两直角边长为,斜边长为,利用图②中的面积的等量关系可以得到直角三角形的三边长之间的一个重要公式,这个公式是:               ,这就是著名的勾股定理.请利用图②证明勾股定理.
应用:我国古代数学家赵爽的“勾股圆方图”是由四个完全相同的直角三角形与中间的一个小正方形拼成一个大正方形(如图③所示).如果大正方形的面积是17,小正方形的面积是1,直角三角形的两直角边长分别为,那么的值是         

查看答案和解析>>

感知:利用图形中面积的等量关系可以得到某些数学公式.例如,根据图①甲,我们可以得到两数和的平方公式:,根据图①乙能得到的数学公式是                  

拓展:图②是由四个完全相同的直角三角形拼成的一个大正方形,直角三角形的两直角边长为,斜边长为,利用图②中的面积的等量关系可以得到直角三角形的三边长之间的一个重要公式,这个公式是:               ,这就是著名的勾股定理.请利用图②证明勾股定理.
应用:我国古代数学家赵爽的“勾股圆方图”是由四个完全相同的直角三角形与中间的一个小正方形拼成一个大正方形(如图③所示).如果大正方形的面积是17,小正方形的面积是1,直角三角形的两直角边长分别为,那么的值是         

查看答案和解析>>

已知:关于x的一元二次方程:.

(1)求证:这个方程有两个不相等的实数根;

(2)当抛物线x轴的交点位于原点的两侧,且到原点的距离相等时,
求此抛物线的解析式;

(3)将(2)中的抛物线在x轴下方的部分沿x轴翻折,其余部分保持能够不变,得到图形C1,将图形C1向右平移一个单位,得到图形C2,当直线(b<0)与图形C2恰有两个公共点时,写出b的取值范围.

24.已知:△ABC和△ADE是两个不全等的等腰直角三角形,其中BA=BCDA=DE,联结EC,取EC的中点M,联结BMDM

(1)如图1,如果点DE分别在边ACAB上,那么BMDM的数量关系与位置关系是                        

(2)将图1中的△ADE绕点A旋转到图2的位置时,判断(1)中的结论是否仍然成立,并说明理由.

                 

查看答案和解析>>


同步练习册答案