如图.求它的面积列出下列各式.其中错误的是( ) (A) (B) (C) (D) 10.如右图所示.数轴上A.B两点所表示的数为a.b,则等于( ) 1-b 2a-b-1 查看更多

 

题目列表(包括答案和解析)

有一个角是30的直角三角形如图,求它的面积y(cm2)与边长x(cm)之间的函数关系式。

查看答案和解析>>

如图1,△ABC为等边三角形,面积为S.D1,E1,F1分别是△ABC三边上的点,且AD1=BE1=CF1=
1
2
AB,连接D1E1,E1F1,F1D1,可得△D1E1F1
(1)用S表示△AD1F1的面积S1=
1
4
,△D1E1F1的面积S1′=
1
4

(2)当D2,E2,F2分别是等边△ABC三边上的点,且AD2=BE2=CF2=
1
3
AB时,如图②,求△AD2F2的面积S2和△D2E2F2的面积S2′;
(3)按照上述思路探索下去,当Dn,En,Fn分别是等边△ABC三边上的点,且ADn=BEn=CFn=
1
n+1
AB精英家教网时(n为正整数),求△ADnFn的面积Sn,△DnEnFn的面积Sn′.

查看答案和解析>>

如图,矩形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD的E点上,BG=10.
(1)当折痕的另一端F在AB边上时,如图.求△EFG的面积;
(2)当折痕的另一端F在AD边上时,如图.证明四边形B精英家教网GEF为菱形,并求出折痕GF的长.

查看答案和解析>>

折叠问题:
(1)如图,矩形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD的E点上,折痕的一端G点在边BC上,BG=10.
①当折痕的另一端点F在AB边上时,如图①,求△EFG的面积;
②当折痕的另一端点F在AD边上时,如图②,证明四边形BGEF为菱形,并求出折痕GF的长.

(2)在矩形纸片ABCD中,AB=5,AD=13.如图③所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ.当点A′在BC边上移动时,折痕的端点P,Q也随之移动.若限定点P,Q分别在AB,AD边上移动,求点A′在BC边上可移动的最大距离.

查看答案和解析>>

如图,矩形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD的E点上,BG=10.

(1)当折痕的另一端F在AB边上时,如图(1).求△EFG的面积.

(2)当折痕的另一端F在AD边上时,如图(2).证明四边形BGEF为菱形,并求出折痕GF的长. 

 

 

查看答案和解析>>


同步练习册答案