多项式的公因式是 . 分解因式:⑴ , ⑵= . 查看更多

 

题目列表(包括答案和解析)

下面是某同学对多项式(x2—4x+2)(x2—4x+6)+4进行分解因式的过程。
解:设x2—4x=y.
原式=(y+2)(y+6)+4  (第一步)
=y2+8y+16     (第二步)
=(y+4)2        (第三步)
=(x2—4x+4)2    (第四步)
回答下列问题:
(1)该同学第二步到第三步运用了分解因式的            
A.提取公因式            B.逆用平方差公式            C.逆用完全平方公式
(2)该同学分解因式的结果不正确,应更正为              
(3)试分解因式n(n+1)(n+2)(n+3)+1.

查看答案和解析>>

下面是某同学对多项式(x2—4x+2)(x2—4x+6)+4进行分解因式的过程。

解:设x2—4x=y.

原式=(y+2)(y+6)+4  (第一步)

=y2+8y+16     (第二步)

=(y+4)2        (第三步)

=(x2—4x+4)2    (第四步)

回答下列问题:

(1)该同学第二步到第三步运用了分解因式的            

A.提取公因式            B.逆用平方差公式            C.逆用完全平方公式

(2)该同学分解因式的结果不正确,应更正为              

(3)试分解因式n(n+1)(n+2)(n+3)+1.

 

查看答案和解析>>

下面是某同学对多项式(x2—4x+2)(x2—4x+6)+4进行分解因式的过程。
解:设x2—4x=y.
原式=(y+2)(y+6)+4  (第一步)
=y2+8y+16     (第二步)
=(y+4)2        (第三步)
=(x2—4x+4)2    (第四步)
回答下列问题:
(1)该同学第二步到第三步运用了分解因式的            
A.提取公因式            B.逆用平方差公式            C.逆用完全平方公式
(2)该同学分解因式的结果不正确,应更正为              
(3)试分解因式n(n+1)(n+2)(n+3)+1.

查看答案和解析>>

能运用完全平方公式分解因式的多项式必须是    项式.其公式特征是:首末两项能写成两个数(或式)      的形式,且两项符号相       ;中间乘积项是上述两数(或式)      ,它的符号     

 

查看答案和解析>>

先阅读下面的材料,再分解因式:    
       要把多项式am+an+bm+bn 分解因式,可以先把它的前两项分成一组,并提出a ;把它的后两项分成一组,并提出b ,从而得到a (m+n )+b (m+n )。这时,由于a (m+n )+b (m+n ),又有公因式(m+n ),于是可提公因式(m+n ),从而得到(m+n )(a+b )。因此有am+an+bm+bn= (am+an )+ (bm+bn )=a (m+n )+b (m+n )= (m+n )(a+b )。
        这种因式分解的方法叫做分组分解法。如果把一个多项式的项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以利用分组分解法来分解因式了。    
        请用上面材料中提供的方法分解因式:    
(1)a2-ab+ac-bc;    
(2)m2+5n-mn-5m。

查看答案和解析>>


同步练习册答案