△ABC中,CD.BD分别为△ABC的外角平分线.已知 ∠A=50°.则∠D= ( ) A.50° B.115° C. 25° D.65° 查看更多

 

题目列表(包括答案和解析)

(1)如图所示,已知△ABC中,∠ABC 、∠ACB的平分线相交于点O,试说明

∠BOC=90°+∠A。

(2)如图所示,在△ABC中,BD 、CD分别是∠ABC 、∠ACB的外角平分线,试说明

∠D=90°-∠A。

(3)如图所示,已知BD为△ABC的角平分线,CD为△ABC外角∠ACE的平分线,且与BD交于点D,试说明∠A=2∠D。

查看答案和解析>>

(1)如图,AB、CD是⊙O的两条弦,它们相交于点P,连接AD、BD,已知AD=BD=4,PC=6,那么CD的长是______.

(2)阅读材料:如图,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”.我们可得出一种计算三角形面积的新方法:数学公式,即三角形面积等于水平宽与铅垂高乘积的一半.

解答下列问题:
如图,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.
①求抛物线和直线AB的解析式;
②点P是抛物线(在第一象限内)上的一个动点,连接PA,PB,当P点运动到顶点C时,求△CAB的铅垂高CD及S△CAB
③点P是抛物线(在第一象限内)上的一个动点,是否存在一点P,使S△PAB=数学公式S△CAB,若存在,求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

附加题:
(1)如图,AB、CD是⊙O的两条弦,它们相交于点P,连接AD、BD,已知AD=BD=4,PC=6,那么CD的长是______.

(2)阅读材料:如图,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”.我们可得出一种计算三角形面积的新方法:,即三角形面积等于水平宽与铅垂高乘积的一半.

解答下列问题:
如图,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.
①求抛物线和直线AB的解析式;
②点P是抛物线(在第一象限内)上的一个动点,连接PA,PB,当P点运动到顶点C时,求△CAB的铅垂高CD及S△CAB
③点P是抛物线(在第一象限内)上的一个动点,是否存在一点P,使S△PAB=S△CAB,若存在,求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

(1)如图所示,已知△ABC中,∠ABC、∠ACB的平分线相交于点O.试说明∠BOC=90°+数学公式∠A;
(2)如图所示,在△ABC中,BD、CD分别是∠ABC、∠ACB的外角平分线.试说明∠D=90°-数学公式∠A;
(3)如图所示,已知BD为△ABC的角平分线,CD为△ABC外角∠ACE的平分线,且与BD交于点D,试说明∠A=2∠D.

查看答案和解析>>

(1)如图所示,已知△ABC中,∠ABC、∠ACB的平分线相交于点O.试说明∠BOC=90°+
1
2
∠A;
(2)如图所示,在△ABC中,BD、CD分别是∠ABC、∠ACB的外角平分线.试说明∠D=90°-
1
2
∠A;
(3)如图所示,已知BD为△ABC的角平分线,CD为△ABC外角∠ACE的平分线,且与BD交于点D,试说明∠A=2∠D.精英家教网

查看答案和解析>>


同步练习册答案