题目列表(包括答案和解析)
在一场魔术表演晚会上,舞台中央摆放的台阶截面如图所示,已知每级台阶的宽度(如CD)均为20 cm,高度(如BE)均为10
cm.接下去要表演一个高难度的节目,魔术师把一个圆锥形的道具靠着台阶摆放,一块木板放在圆锥形道具上面,一头着地,一头刚好碰着C点,并且设计木板的倾斜角为30°,AG=FG.
请你计算:(1)AB的长;
(2)这个圆锥的侧面积.
如图①,有两个形状完全相同的直角三角形ABC和EFG叠放在一起(点A与点E重合),已知AC=8 cm,BC=6 cm,∠C=90°,EG=4 cm,∠EGF=90°,O是△EFG斜边上的中点.
![]()
如图②,若整个△EFG从图①的位置出发,以1 cm/s的速度沿射线AB方向平移,在△EFG平移的同时,点P从△EFG的顶点G出发,以1 cm/s的速度在直角边GF上向点F运动,当点P到达点F时,点P停止运动,△EFG也随之停止平移.设运动时间为x(s),FG的延长线交AC于H,(不考虑点P与G、F重合的情况).
![]()
(1)当x为何值时,OP∥AC?
(2)你能不能用含x的式子来表示四边形OAHP面积呢?若能,请表示;若不能,请说明理由.
(3)是否存在某一时刻,使四边形OAHP面积与△ABC面积的比为13∶24?若存在,求出x的值;若不存在,说明理由.(参考数据:1142=12996,1152=13225,1162=13456或4.42=19.36,4.52=20.25,4.62=21.16)
如图①,有两个形状完全相同的直角三角形ABC和EFG叠放在一起(点A与点E重合),已知AC=8 cm,BC=6 cm,∠C=90°,EG=4 cm,∠EGF=90°,O是△EFG斜边上的中点.
如图②,若整个△EFG从图①的位置出发,以1 cm/s的速度沿射线AB方向平移,在△EFG平移的同时,点P从△EFG的顶点G出发,以1 cm/s的速度在直角边GF上向点F运动,当点P到达点F时,点P停止运动,△EFG也随之停止平移.设运动时间为x(s),FG的延长线交AC于H,四边形OAHP的面积为y(cm2)(不考虑点P与G、F重合的情况).
(1)当x为何值时,OP∥AC?
(2)求y与x之间的函数关系式,并确定自变量x的取值范围.
(3)是否存在某一时刻,使四边形OAHP面积与△ABC面积的比为13∶24?若存在,求出x的值;若不存在,说明理由.
(参考数据:1142=12996,1152=13225,1162=13456或4.42=19.36,4.52=20.25,4.62=21.16)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com