平面上有一条直线时.这条直线把这个平面分成( )部分, 平面上有两条直线时.这两条直线把这个平面最多分成( )部分, 平面上有三条直线时.这三条直线把这个平面最多分成( )部分, 平面上有四条直线时.这四条直线把这个平面最多分成( )部分,- 平面上有n条直线时.这n条直线把这个平面最多分成部分. 查看更多

 

题目列表(包括答案和解析)

在平面直角坐标系xOy中,
探究1:在x轴上有一点A(2,0),如图1
(1)如果线段OA绕原点O逆时针旋转90°,则线段OA所经过的扇形区域面积为______.
(2)如果在x轴上还有一点B(4,0),连接AB,求线段AB绕原点O逆时针旋转90°所经过的区域面积.
探究2:(1)若在x轴上有一点M(2,0),N(2,2),连接MN,求线段MN绕原点O逆时针旋转90°所经过区域的面积.小明解决这个问题时探究如下:①根据题目要求,画出所要求面积的图形2(实线部分);②发现两条曲线正好分别是点M、N绕原点逆时针转90°的两段弧线;③利用转化、割补思想把不规范图形转化为规范图形组合(注意虚线部分).
现请你写出解答过程.
(2)在坐标系xOy上有点P(2,2)、Q(2,4),若线段PQ绕原点O逆时针旋转90°,求线段PQ所经过的区域面积.
探究3:在坐标系xOy上有点R(2,0)、S(1,),若线段RS绕原点O逆时针旋转90°,求线段RS所经过区域的面积(重复经过的区域面积不重复计算).

查看答案和解析>>

某班研究性学习小组在研究用一条直线等分几何图形的面积时,发现如下事实:
㈠如图①,对于三角形ABC,取BC边中点D,过A、D两点画一条直线即可.
理由:∵△ABD与△ADC等底等高,
∴S△ABD=S△ADC
㈡如图②,对于平行四边形ABCD,连接两对角线AC、BD交于点O,过O点任作一直线MN即可.(不妨设与AD、BC分别交于点M、N)
理由:∵四边形ABCD是平行四边形,
∴AO=CO,AD∥BC.∴∠MAO=∠NCO.
∴易得S△AOM=S△CON
∴S四边形ABNM=S四边形CDMN
受上面的启发,请你研究一下下面的问题:
某村王大爷家有一块梯形形状的稻田(如图③所示),已知:上底AD=40米,下底BC=60米,高h=30米,王大爷准备把这块梯形形状的稻田平均分给两个儿子(面积相等).
(1)分割方法有许多种,请你帮助王大爷设计两种不同的分割方案,在图③、图④中分别画出来,并说明理由;
(2)为了尽可能减少筑砌分割田坎的劳动量(只考虑田坎长度对工时的影响,不计其它因素),问:田坎应砌在什么位置最短?请画出图形,并求出此时分割线的长度.

查看答案和解析>>

一般地,由n条不在同一直线上的线段首尾顺次连接组成的平面图形称为n边形,又称为多边形.用水平线和竖直线将平面分成若干个边长为1的小正方形格子,小正方形的顶点,叫格点,以格点为顶点的多边形叫格点多边形.设格点多边形的面积为S,它各边上格点的个数和为x.

(1)如图1中的格点多边形,其内部都只有一个格点,它们的面积与各边上格点的个数和的对应关系如下表,请把表格补充完整,并写出S与x之间的关系式.
答:S=
1
2
x
1
2
x

多边形的序号
多边形的面积S 2 2.5 3 4
各边上格点的个数和x 4
(2)请你在图2上画出一些格点多边形,使这些多边形内部都有而且只有2格点.此时所画的各个多边形的面积S与它各边上格点的个数和x之间的关系式是:S=
1
2
x+1
1
2
x+1

注:备用表格供你探索使用(作图时,请使用铅笔).

查看答案和解析>>

一般地,由n条不在同一直线上的线段首尾顺次连接组成的平面图形称为n边形,又称为多边形.用水平线和竖直线将平面分成若干个边长为1的小正方形格子,小正方形的顶点,叫格点,以格点为顶点的多边形叫格点多边形.设格点多边形的面积为S,它各边上格点的个数和为x.

(1)如图1中的格点多边形,其内部都只有一个格点,它们的面积与各边上格点的个数和的对应关系如下表,请把表格补充完整,并写出S与x之间的关系式.
答:S=______.
多边形的序号
多边形的面积S22.534
各边上格点的个数和x4
(2)请你在图2上画出一些格点多边形,使这些多边形内部都有而且只有2格点.此时所画的各个多边形的面积S与它各边上格点的个数和x之间的关系式是:S=______.
注:备用表格供你探索使用(作图时,请使用铅笔).

查看答案和解析>>

某班研究性学习小组在研究用一条直线等分几何图形的面积时,发现如下事实:
㈠如图①,对于三角形ABC,取BC边中点D,过A、D两点画一条直线即可.
理由:∵△ABD与△ADC等底等高,
∴S△ABD=S△ADC
㈡如图②,对于平行四边形ABCD,连接两对角线AC、BD交于点O,过O点任作一直线MN即可.(不妨设与AD、BC分别交于点M、N)
理由:∵四边形ABCD是平行四边形,
∴AO=CO,ADBC.∴∠MAO=∠NCO.
∴易得S△AOM=S△CON
∴S四边形ABNM=S四边形CDMN
受上面的启发,请你研究一下下面的问题:
某村王大爷家有一块梯形形状的稻田(如图③所示),已知:上底AD=40米,下底BC=60米,高h=30米,王大爷准备把这块梯形形状的稻田平均分给两个儿子(面积相等).
(1)分割方法有许多种,请你帮助王大爷设计两种不同的分割方案,在图③、图④中分别画出来,并说明理由;
(2)为了尽可能减少筑砌分割田坎的劳动量(只考虑田坎长度对工时的影响,不计其它因素),问:田坎应砌在什么位置最短?请画出图形,并求出此时分割线的长度.

查看答案和解析>>


同步练习册答案