题目列表(包括答案和解析)
设边长为2a的正方形的中心A在直线l上,它的一组对边垂直于直线l,半径为r的⊙O的圆心O在直线l上运动,点A、O间距离为d.
(1)如图①,当r<a时,根据d与a、r之间关系,将⊙O与正方形的公共点个数填入下
![]()
表:(6分)
| d、a、r之间关系 | 公共点的个数 |
| d>a+r |
|
| d=a+r |
|
| a-r<d<a+r |
|
| d=a-r |
|
| d<a-r |
|
所以,
当r<a时,⊙O与正方形的公共点的个数可能有 个;
(2)如图②,当r=a时,根据d与a、r之间关系,将⊙O与正方形的公共点个数填入下表:(5分)
| d、a、r之间关系 | 公共点的个数 |
| d>a+r |
|
| d=a+r |
|
| a≤d<a+r |
|
| d<a |
|
![]()
所以,当r=a时,⊙O与正方形的公共点个数可能有 个;
(3)如图③,当⊙O与正方形有5个公共点时,试说明r=a;(5分)
![]()
| d、a、r之间关系 | 公共点的个数 |
| d>a+r | |
| d=a+r | |
| a-r<d<a+r | |
| d=a-r | |
| d<a-r | |
| d、a、r之间关系 | 公共点的个数 |
| d>a+r | |
| d=a+r | |
| a≤d<a+r | |
| d<a | |
设边长为2a的正方形的中心A在直线l上,它的一组对边垂直于直线l,半径为r的⊙O的圆心O在直线l上运动,点A、O间距离为d.
(1)如图①,当r<a时,根据d与a、r之间关系,将⊙O与正方形的公共点个数填入下
![]()
表:(6分)
|
d、a、r之间关系 |
公共点的个数 |
|
d>a+r |
|
|
d=a+r |
|
|
a-r<d<a+r |
|
|
d=a-r |
|
|
d<a-r |
|
所以,
当r<a时,⊙O与正方形的公共点的个数可能有 个;
(2)如图②,当r=a时,根据d与a、r之间关系,将⊙O与正方形的公共点个数填入下表:(5分)
|
d、a、r之间关系 |
公共点的个数 |
|
d>a+r |
|
|
d=a+r |
|
|
a≤d<a+r |
|
|
d<a |
|
![]()
所以,当r=a时,⊙O与正方形的公共点个数可能有 个;
(3)如图③,当⊙O与正方形有5个公共点时,试说明r=
a;(5分)
![]()
设边长为2a的正方形的中心A在直线L上,它的一组对边垂直于直线L,半径为r的⊙O的圆心O在直线L上运动,点A,O间距离为d.
![]()
(1)如图3-3-17①,当r<a时,根据d与a,r之间关系,将⊙O与正方形的公共点个数填入下表:
| d、a、r之间关系 | 公共点的个数 |
| d>a+r | |
| d=a+r | |
| a-r<d<a+r | |
| d=a-4 | |
| d<a-r |
所以,当r<a时,⊙O与正方形的公共点的个数可能有_______个.
(2)如图3-3-17②,当r=a时,根据d与a,r之间关系,将⊙O与正方形的公共点个数填入下表:
| d、a、r之间关系 | 公共点的个数 |
| d>a+r | |
| d=a+r | |
| a≤d<a+r | |
| d<a |
所以,当r=a时,⊙O与正方形的公共点个数可能有______个.
(3)如图3-3-17③,当⊙O与正方形有5个公共点时,试说明r=
a;
(4)就r>a的情形,请你仿照“当……时,⊙O与正方形的公共点个数可能有_____个”的形式,至少给出一个关于“⊙O与正方形的公共点个数”的正确结论.
设边长为2a的正方形的中心A在直线l上,它的一组对边垂直于直线l,半径为r的⊙O的圆心O在直线l上运动,点A、O间距离为d.
(1)如图①,当r<a时,根据d与a、r之间关系,将⊙O与正方形的公共点个数填入下表:
![]()
所以,当r<a时,⊙O与正方形的公共点的个数可能有 个;
(2)如图②,当r=a时,根据d与a、r之间关系,将⊙O与正方形的公共点个数填入下表:
![]()
所以,当r=a时,⊙O与正方形的公共点个数可能有 个;
(3)如图③,当⊙O与正方形有5个公共点时,试说明r=
a;
![]()
(4)就r>a的情形,请你仿照摰薄??保??I>O与正方形的公共点个数可能有
个數男问剑?辽俑?鲆桓龉赜趽⊙O与正方形的公共点个数數恼?方崧郏?ㄗⅲ旱冢?)小题若多给出一个正确结论,则可多得2分,但本大题得分总和不得超过12分)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com