20. (1) 将图①中的三角形三个顶点的纵坐标加1.横坐标加2.在图②中画出变化后所得的三角形, (2) 与图①中的三角形相比.图③中的三角形发生了哪些变化? 查看更多

 

题目列表(包括答案和解析)

(本题满分8分)如图①和图②中每个小正方形的边长都为1个单位长度.

    (1)将图①中的格点△ABC(顶点都在网格线交点处的三角形叫做格点三角形)向上平移2个单位长度得到△A1B1C1.请你在图①中画出A1B1C1

    (2)在图②中画一个与格点△ABC相似的格点△A2B2C2,且△A2B2C2与△ABC的相似比为2:1.

 

 

 

 

 

 

 

查看答案和解析>>

(本题满分8分)如图①和图②中每个小正方形的边长都为1个单位长度.

    (1)将图①中的格点△ABC(顶点都在网格线交点处的三角形叫做格点三角形)向上平移2个单位长度得到△A1B1C1.请你在图①中画出A1B1C1

    (2)在图②中画一个与格点△ABC相似的格点△A2B2C2,且△A2B2C2与△ABC的相似比为2:1.

 

 

 

 

 

 

 

查看答案和解析>>

(本题满分8分)如图①和图②中每个小正方形的边长都为1个单位长度.
(1)将图①中的格点△ABC(顶点都在网格线交点处的三角形叫做格点三角形)向上平移2个单位长度得到△A1B1C1.请你在图①中画出A1B1C1
    (2)在图②中画一个与格点△ABC相似的格点△A2B2C2,且△A2B2C2与△ABC的相似比为2:1.

查看答案和解析>>

(本题满分8分)如图①和图②中每个小正方形的边长都为1个单位长度.
(1)将图①中的格点△ABC(顶点都在网格线交点处的三角形叫做格点三角形)向上平移2个单位长度得到△A1B1C1.请你在图①中画出A1B1C1
    (2)在图②中画一个与格点△ABC相似的格点△A2B2C2,且△A2B2C2与△ABC的相似比为2:1.

查看答案和解析>>

 (本题8分)把两个直角边长均为6的等腰直角三角板ABCEFG叠放在一起(如图①),使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将三角板EFGO点顺时针旋转(旋转角α满足条件:0°<α<90°),四边形CHGK是旋转过程中两三角板的重叠部分(如图②).

1.(1) 探究:在上述旋转过程中,BHCK的数量关系以及四边形CHGK的面积的变化情况(直接写出探究的结果,不必写探究及推理过程);

  2.(2) 利用(1)中你得到的结论,解决下面问题:连接HK,在上述旋转过程中,是否存在某一位置,使△GKH的面积恰好等于△ABC面积的?若存在,求出此时BH的长度;若不存在,说明理由.

 

查看答案和解析>>


同步练习册答案