如图末-2所示.△ABC中.AD是∠BAC的平分线. BD=CD.DE.DF分别垂直于AB和AC.E与F为垂足. ∠ADE=70°.则∠ADF的度数为( ) 查看更多

 

题目列表(包括答案和解析)

在△ABC中,∠A=60°.
(1)如图(1)所示,∠ABC和∠ACB的内角平分线交于点P,则∠P=
 
.(直接写出答案即可)
(2)如图(2)所示,∠ABC的内角平分线和∠ACB的外角平分线交于点P,试求出∠P,并说明理由;(请写出详细的推理过程)
(3)如图(3)所示,∠ABC和∠ACB的外角平分线交于点P,试求出∠P=
 
.(直接写出答案即可)
精英家教网

查看答案和解析>>

如图(1)所示,△ABC是直角三角形,BD是斜边上的高,若AB=3,BC=4,AC=5,求BD的长.
解:因为S△ABC=
1
2
AB•BC,S△ABC=
1
2
AC•BD,所以
1
2
AB•BC=
1
2
AC•BD,
所以3×4=5BD,则BD=
12
5

以上求解的基本思想是以三角形的面积不变为相等关系,通过从不同角度表示同一三角形的面积来发现三角形各边及其上的高的关系,这种解决问题的方法我们常称为“面积法”,根据你的理解回答下面的问题:
如图(2)所示,△ABC中,AD,CE都是△ABC的高,且AD=3cm,CE=2cm,AB=6精英家教网cm,求CB的长.

查看答案和解析>>

探究问题:
(1)阅读理解:
①如图(A),在已知△ABC所在平面上存在一点P,使它到三角形顶点的距离之和最小,则称点P为△ABC的费马点,此时PA+PB+PC的值为△ABC的费马距离;
②如图(B),若四边形ABCD的四个顶点在同一圆上,则有AB•CD+BC•DA=AC•BD.此为托勒密定理;
精英家教网
(2)知识迁移:
①请你利用托勒密定理,解决如下问题:
如图(C),已知点P为等边△ABC外接圆的
BC
上任意一点.求证:PB+PC=PA;
②根据(2)①的结论,我们有如下探寻△ABC(其中∠A、∠B、∠C均小于120°)的费马点和费马距离的方法:
第一步:如图(D),在△ABC的外部以BC为边长作等边△BCD及其外接圆;
第二步:在
BC
上任取一点P′,连接P′A、P′B、P′C、P′D.易知P′A+P′B+P′C=P′A+(P′B+P′C)=P′A+
 

第三步:请你根据(1)①中定义,在图(D)中找出△ABC的费马点P,并请指出线段
 
的长度即为△ABC的费马距离.
精英家教网
(3)知识应用:
2010年4月,我国西南地区出现了罕见的持续干旱现象,许多村庄出现了人、畜饮水困难,为解决老百姓的饮水问题,解放军某部来到云南某地打井取水.
已知三村庄A、B、C构成了如图(E)所示的△ABC(其中∠A、∠B、∠C均小于120°),现选取一点P打水井,使从水井P到三村庄A、B、C所铺设的输水管总长度最小,求输水管总长度的最小值.
精英家教网

查看答案和解析>>

探究问题:
(1)阅读理解:
①如图(A),在已知△ABC所在平面上存在一点P,使它到三角形顶点的距离之和最小,则称点P为△ABC的费马点,此时PA+PB+PC的值为△ABC的费马距离;
②如图(B),若四边形ABCD的四个顶点在同一圆上,则有AB•CD+BC•DA=AC•BD.此为托勒密定理;

(2)知识迁移:
①请你利用托勒密定理,解决如下问题:
如图(C),已知点P为等边△ABC外接圆的上任意一点.求证:PB+PC=PA;
②根据(2)①的结论,我们有如下探寻△ABC(其中∠A、∠B、∠C均小于120°)的费马点和费马距离的方法:
第一步:如图(D),在△ABC的外部以BC为边长作等边△BCD及其外接圆;
第二步:在上任取一点P′,连接P′A、P′B、P′C、P′D.易知P′A+P′B+P′C=P′A+(P′B+P′C)=P′A+______;
第三步:请你根据(1)①中定义,在图(D)中找出△ABC的费马点P,并请指出线段______的长度即为△ABC的费马距离.

(3)知识应用:
2010年4月,我国西南地区出现了罕见的持续干旱现象,许多村庄出现了人、畜饮水困难,为解决老百姓的饮水问题,解放军某部来到云南某地打井取水.
已知三村庄A、B、C构成了如图(E)所示的△ABC(其中∠A、∠B、∠C均小于120°),现选取一点P打水井,使从水井P到三村庄A、B、C所铺设的输水管总长度最小,求输水管总长度的最小值.

查看答案和解析>>

如图(1)所示,△ABC中,∠BAC=90°AB =AC,AE是过A的一条直线,且B、C在AE的异侧,BD⊥AE于D, CE⊥AE于E.

(1)你能说明BD=DE+CE吗?

(2)若直线AE绕A点旋转到图(2)位置时(BD<CE),其余条件不变,问BD与DE、CE的关系如何?请予以证明;

(3)若直线AE绕A点旋转到图(3)位置时(BD>CE),其余条件不变,问BD与DE、CE的关系如何?请直接写出结果,不需证明;

 


查看答案和解析>>


同步练习册答案