22.如图.已知:A.F.C.D四点在一条直线上.AF=CD.∠D=∠A.且AB=DE.请将下面说明△ABC≌△DEF的过程和理由补充完整. 解:∵AF=CD( ) ∴AF+FC=CD+ .即AC=DF 在△ABC和△DEF中 ∴△ABC≌△DEF( ) 查看更多

 

题目列表(包括答案和解析)

已知:如图①,E、F、G、H按照AE=CG,BF=DH,BF=nAE(n是正整数)的关系,分别在两邻边长a、na的矩形ABCD各边上运动,设AE=x,四边形EFGH的面积为S.
(1)当n=1、2时,如图②③,观察运动情况,写出四边形EFGH各顶点运动到何位置,使S=
1
2
S矩形ABCD(2)当n=3时,如图④,求S与x之间的函数关系式(写出自变量x的取值范围),探索S随x增大而变得化的规律;猜想四边形EFGH各顶点运动到何位置使S=
1
2
S矩形ABCD
(3)当n=k(k≥1)时,你所得到的规律和猜测是否成立,请说明理由.
(考生注意:你在本题研究中,如果能发现新的结论,并说明结论正确的理由,将酌情另加3~5分)精英家教网

查看答案和解析>>

(本题10分)已知:正方形ABCD的边长为a,P是边CD上一个动点不与C、D重合,CP=b,以CP为一边在正方形ABCD外作正方形PCEF,连接BF、DF.

1.观察计算:(1)如图1,当a=4,b=1时,四边形ABFD的面积为          

(2)如图2,当a=4,b=2时,四边形ABFD的面积为          

(3)如图3,当a=4,b=3时,四边形ABFD的面积为          

2.探索发现:(4)根据上述计算的结果,你认为四边形ABFD的面积与正方形ABCD的面积之间有怎样的关系?证明你的结论;

3.综合应用:(5)农民赵大伯有一块正方形的土地(如图),由于修路被占去一块三角形的地方△BCE,但决定在DE的右侧补给赵大伯一块土地,补偿后的土地为四边形ABMD,且四边形ABMD的面积与原来正方形土地的面积相等,M、E、B三点要在一条直线上,请你画图说明,如何确定M点的位置.(要求尺规作图,保留作图痕迹)

 

查看答案和解析>>

(本题满分9分)

如图,以为顶点的抛物线与轴交于点.已知两点坐标分别为(3,0)、(0,4).

(1)求抛物线的解析式;

(2)设是抛物线上的一点(为正整数),且它位于对称轴的右侧.若以为顶点的四边形四条边的长度是四个连续的正整数,求点的坐标;

(3)在(2)的条件下,试问:对于抛物线对称轴上的任意一点是否总成立?请说明理由.

 

查看答案和解析>>

(本题满分9分)
如图,以为顶点的抛物线与轴交于点.已知两点坐标分别为(3,0)、(0,4).
(1)求抛物线的解析式;
(2)设是抛物线上的一点(为正整数),且它位于对称轴的右侧.若以为顶点的四边形四条边的长度是四个连续的正整数,求点的坐标;
(3)在(2)的条件下,试问:对于抛物线对称轴上的任意一点是否总成立?请说明理由.

查看答案和解析>>

(本题满分9分)
如图,以为顶点的抛物线与轴交于点.已知两点坐标分别为(3,0)、(0,4).
(1)求抛物线的解析式;
(2)设是抛物线上的一点(为正整数),且它位于对称轴的右侧.若以为顶点的四边形四条边的长度是四个连续的正整数,求点的坐标;
(3)在(2)的条件下,试问:对于抛物线对称轴上的任意一点是否总成立?请说明理由.

查看答案和解析>>


同步练习册答案