知识点4 :平分一条线段的点叫线段的中点 例 1.延长线段MN到P.使NP=MN.则N是线段MP的 点.MN= MP,MP= NP 例 2.如图.C.D是线段AB上的两个点.CD=8cm.M是AC的中点.N是DB的中点.MN=12cm.那么线段AB的长等于 cm A M C D N B 查看更多

 

题目列表(包括答案和解析)

我们把对称中心重合,四边分别平行的两个正方形之间的部分叫“方形环”,易知方形环四周的宽度相等.

一条直线l与方形环的边线有四个交点MM′、N′、N.小明在探究线段MM′与NN 的数量关系时,从点M′、N′向对边作垂线段MENF,利用三角形全等、相似及锐角三角函数等相关知识解决了问题.请你参考小明的思路解答下列问题:

(1)当直线l与方形环的对边相交时,如图1,直线l分别交ADAD′、BC′、BCMM′、N′、N,小明发现MM′与NN相等,请你帮他说明理由;

(2)当直线l与方形环的邻边相交时,如图2,l分别交ADAD′、DC′、DCMM′、N′、NlDC的夹角为α,你认为MM′与NN还相等吗?若相等,说明理由;若不相等,求出的值(用含α的三角函数表示).

查看答案和解析>>

我们把对称中心重合,四边分别平行的两个正方形之间的部分叫“方形环”,易知方形环四周的宽度相等.一条直线l与方形环的边线有四个交点M、M′、N′、N、小明在探究线段MM′与N′N的数量关系时,从点M′、N′向对边作垂线段M′E、N′F,利用三角形全等、相似及锐角三角函数等相关知识解决了问题、请你参考小明的思路解答下列问题:
(1)当直线l与方形环的对边相交时(如图1),直线l分别交AD、A′D'、B′C′、BC于M、M′、N′、N,小明发现MM′与N′N相等,请你帮他说明理由;
(2)当直线l与方形环的邻边相交时(如图2),l分别交AD、A′D′、D′C′、DC于M、M′、N′、N,l与DC的夹角为α,你认为MM′与N′N还相等吗?若相等,说明理由;若不相等,求出
MM′N′N
的值(用含α的三角函数表示).
精英家教网

查看答案和解析>>

(9分)我们把对称中心重合,四边分别平行的两个正方形之间的部分叫“方形环”,易知方形环四周的宽度相等.

一条直线l与方形环的边线有四个交点.小明在探究线段 的数量关系时,从点向对边作垂线段,利用三角形全等、相似及锐角三角函数等相关知识解决了问题.请你参考小明的思路解答下列问题:

⑴当直线l与方形环的对边相交时(如图1),直线l分别交,小明发现相等,请你帮他说明理由;

⑵当直线l与方形环的邻边相交时(如图2),l分别交l的夹角为,你认为还相等吗?若     相等,说明理由;若不相等,求出的值(用含的三角函数表示).

 

查看答案和解析>>

(9分)我们把对称中心重合,四边分别平行的两个正方形之间的部分叫“方形环”,易知方形环四周的宽度相等.

一条直线l与方形环的边线有四个交点.小明在探究线段 的数量关系时,从点向对边作垂线段,利用三角形全等、相似及锐角三角函数等相关知识解决了问题.请你参考小明的思路解答下列问题:
⑴当直线l与方形环的对边相交时(如图1),直线l分别交,小明发现相等,请你帮他说明理由;
⑵当直线l与方形环的邻边相交时(如图2),l分别交l的夹角为,你认为还相等吗?若    相等,说明理由;若不相等,求出的值(用含的三角函数表示).

查看答案和解析>>

(9分)我们把对称中心重合,四边分别平行的两个正方形之间的部分叫“方形环”,易知方形环四周的宽度相等.

一条直线l与方形环的边线有四个交点.小明在探究线段 的数量关系时,从点向对边作垂线段,利用三角形全等、相似及锐角三角函数等相关知识解决了问题.请你参考小明的思路解答下列问题:
⑴当直线l与方形环的对边相交时(如图1),直线l分别交,小明发现相等,请你帮他说明理由;
⑵当直线l与方形环的邻边相交时(如图2),l分别交l的夹角为,你认为还相等吗?若    相等,说明理由;若不相等,求出的值(用含的三角函数表示).

查看答案和解析>>


同步练习册答案