9.小明同学将(图3)中的阴影部分(边长为m的大正方形 中有一个边长为n的小正方形).拼成了一个长方形. 比较两图阴影部分的面积.可以得到的结论是 查看更多

 

题目列表(包括答案和解析)

9、小明同学将(图)中的阴影部分(边长为m的大正方形中有一个边长为n的小正方形),拼成了一个长方形(如图),比较两图阴影部分的面积,可以得到的结论是
m2-n2=(m-n)(m+n)
(用含m,n的式子表示)

查看答案和解析>>

小明同学将(图)中的阴影部分(边长为m的大正方形中有一个边长为n的小正方形),拼成了一个长方形(如图),比较两图阴影部分的面积,可以得到的结论是______(用含m,n的式子表示)

查看答案和解析>>

小明同学将(图)中的阴影部分(边长为m的大正方形中有一个边长为n的小正方形),拼成了一个长方形(如图),比较两图阴影部分的面积,可以得到的结论是________(用含m,n的式子表示)

查看答案和解析>>

阅读下面材料:
小明同学遇到这样一个问题:定义:如果一个图形绕着某定点旋转一定的角度α (0°<α<360°) 后所得的图形与原图形重合,则称此图形是旋转对称图形.如等边三角形就是一个旋转角为120°的旋转对称图形.如图1,点O是等边三角形△ABC的中心,D、E、F分别为AB、BC、CA的中点,请你将△ABC分割并拼补成一个与△ABC面积相等的新的旋转对称图形.小明利用旋转解决了这个问题(如图2所示).图2中阴影部分所示的图形即是与△ABC面积相等的新的旋转对称图形.请你参考小明同学解决问题的方法,利用图形变换解决下列问题:
如图3,在等边△ABC中,E1、E2、E3分别为AB、BC、CA 的中点,P 1、P2,M1、M2,N1、N2分别为AB、BC、CA的三等分点.
(1)在图3中画-个和△ABC面积相等的新的旋转对称图形,并用阴影表示(保留画图痕迹);
(2)若△ABC的边长为6,则图3中△ABM1的面积为______

查看答案和解析>>

(2013•宜兴市二模)阅读下面材料:
小明同学遇到这样一个问题:定义:如果一个图形绕着某定点旋转一定的角度α (0°<α<360°) 后所得的图形与原图形重合,则称此图形是旋转对称图形.如等边三角形就是一个旋转角为120°的旋转对称图形.如图1,点O是等边三角形△ABC的中心,D、E、F分别为AB、BC、CA的中点,请你将△ABC分割并拼补成一个与△ABC面积相等的新的旋转对称图形.小明利用旋转解决了这个问题(如图2所示).图2中阴影部分所示的图形即是与△ABC面积相等的新的旋转对称图形.请你参考小明同学解决问题的方法,利用图形变换解决下列问题:
如图3,在等边△ABC中,E1、E2、E3分别为AB、BC、CA 的中点,P 1、P2,M1、M2,N1、N2分别为AB、BC、CA的三等分点.
(1)在图3中画-个和△ABC面积相等的新的旋转对称图形,并用阴影表示(保留画图痕迹);
(2)若△ABC的边长为6,则图3中△ABM1的面积为
3
3
3
3

(3)若△ABC的面积为a,则图3中△FGH的面积为
a
7
a
7

查看答案和解析>>


同步练习册答案