如图:如果∠1+∠2=280°.则∠1= .∠2= .∠3= . 查看更多

 

题目列表(包括答案和解析)

阅读下面材料:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为∣AB∣。

当A、B两点中有一点在原点时,不妨设点A在原点,

如图1,∣AB∣=∣OB∣=∣b∣=∣a-b∣;

当A、B两点都不在原点时,

如图2,点A、B都在原点的右边

∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣=b-a=∣a-b∣;

如图3,点A、B都在原点的左边,

∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣=-b-(-a)=∣a-b∣;

如图4,点A、B在原点的两边,

∣AB∣=∣OB∣+∣OA∣=∣a∣+∣b∣= a +(-b)=∣a-b∣;

回答下列问题:

(1)数轴上表示2和5的两点之间的距离是_________,数轴上表示-2和-5的两点之间的距离是_________,数轴上表示1和-3的两点之间的距离是_______;

(2)数轴上表示x和-1的两点A和B之间的距离是___________,如果∣AB∣=2,那么x为____________;

(3)当代数式∣x+1∣=∣x-2∣取最小值时,相应的x的取值范围是             .

 

查看答案和解析>>

小明对直角三角形很感兴趣. △ABC中,∠ACB=90°,D是AB上任意一点,连接DC,作DE⊥DC,EA⊥AC,DE与AE交于点E.请你跟着他一起解决下列问题:

(1)如图1,若△ABC是等腰直角三角形,则DE,DC有什么数量关系?请给出证明.
(2)如果换一个直角三角形,如图2,∠CBA=30°,则DE,DC又有什么数量关系?请给出证明.
(3)由(1)、(2)这两种特殊情况,小明提出问题:如果直角三角形ABC中,BC=mAC,那DE, DC有什么数量关系?请给出证明.

查看答案和解析>>

如图,抛物线y=ax2+bx+c的顶点为P,对称轴直线x=1与x轴交于点D,抛物线与x轴交于A、B两点,与y轴交于点C,其中A(-1,0)、C(0,3).
【小题1】求此抛物线的解析式
【小题2】点E在线段BC上,若△DEB为等腰三角形,求点E的坐标
【小题3】点F、Q都在该抛物线上,若点C与点F关于直线x=1成轴对称,连结BF、BQ,如果∠FBQ=45°,求点Q的坐标;
【小题4】将△BOC绕着它的顶点B顺时针在第一象限内旋转,旋转后的图形为△BO'C',BO'与BP重合时,则△BO'C'不在BP上的顶点C'的坐标为   ▲   (直接写出答案).

查看答案和解析>>

(1)阅读下面材料:

点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为∣AB∣。当A、B两点中有一点在原点时,不妨设点A在原点,如图1,∣AB∣=∣OB∣=∣b∣=∣a-b∣;当A、B两点都不在原点时,如图2,点A、B都在原点的右边∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣=b-a=∣a-b∣;

①  如图3,点A、B都在原点的左边,∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣=-b-(-a)=∣a-b∣;

②  如图4,点A、B在原点的两边,∣AB∣=∣OB∣+∣OA∣=∣a∣+∣b∣= a +(-b)=∣a-b∣;

(2)回答下列问题:

1.数轴上表示2和5的两点之间的距离是_________,数轴上表示-2和-5的两点之间的距离是_________,数轴上表示1和-3的两点之间的距离是_______;(共3分)

2.数轴上表示x和-1的两点A和B之间的距离是_____,如果∣AB∣=2,那么x为_  ___  (共4分)

3.当代数式∣x+1∣+∣x-2∣+∣x+3∣取最小值时,相应的x的值是___________;此时代数式∣x+1∣+∣x-2∣+∣x+3∣的值是_____________.(6分)

 

查看答案和解析>>

如图,抛物线y=ax2+bx+c的顶点为P,对称轴直线x=1与x轴交于点D,抛物线与x轴交于A、B两点,与y轴交于点C,其中A(-1,0)、C(0,3).

1.求此抛物线的解析式

2.点E在线段BC上,若△DEB为等腰三角形,求点E的坐标

3.点F、Q都在该抛物线上,若点C与点F关于直线x=1成轴对称,连结BF、BQ,如果∠FBQ=45°,求点Q的坐标;

4.将△BOC绕着它的顶点B顺时针在第一象限内旋转,旋转后的图形为△BO'C',BO'与BP重合时,则△BO'C'不在BP上的顶点C'的坐标为    ▲    (直接写出答案).

 

查看答案和解析>>


同步练习册答案