22.填空:已知.如图.∠1=∠ACB.∠2=∠3.FH⊥AB于H.请说明CD⊥AB的理由. 答:理由: ∵∠1=∠ACB∴DE∥BC ∴∠2= ∵∠2=∠3 ∴∠3= ∴CD∥FH( ) ∴∠BDC=∠BHF( ) 又∵FH⊥AB ∴ . 查看更多

 

题目列表(包括答案和解析)

根据题意填空:
已知,如图,AD∥BC,∠BAD=∠BCD,求证:AB∥CD.
证明:∵AD∥BC(已知)
∴∠1=
∠2(两直线平行,内错角相等),
∠2(两直线平行,内错角相等),

又∵∠BAD=∠BCD ( 已知 )
∴∠BAD-∠1=∠BCD-∠2
(等式的性质)
(等式的性质)

即:∠3=∠4
AB∥CD(内错角相等,两直线平行)
AB∥CD(内错角相等,两直线平行)

查看答案和解析>>

精英家教网在下面过程中的横线上填空.
已知:如图,BC∥EF,BC=EF,AD=BE.求证:AC=DF.
解:∵BC∥EF
∴∠ABC=∠
 

又∵AD=BE(已知)
∴AB=
 

在△ABC和△DEF中
 =  
 =  
 =  

 
=
 

 
=
 

∴△ABC≌
 

 
=
 

查看答案和解析>>

22、结合图形填空:
已知,如图,∠BAE+∠AED=180°,∠M=∠N
试说明:∠1=∠2
解:∵∠BAE+∠AED=180°
AB
CD
(同旁内角互补,两直线平行)
∴∠BAE=
∠AEC
(两直线平行,内错角相等)
又∵∠M=∠N (已知)
AN
ME
(内错角相等,两直线平行)
∴∠NAE=
∠MEA
(两直线平行,内错角相等)
∴∠BAE-∠NAE=
∠AEC
-
∠MEA

即∠1=∠2

查看答案和解析>>

25、推理填空:
已知,如图,BCE、AFE是直线,AB∥CD,∠1=∠2,∠3=∠4.
求证:AD∥BE.
证明:∵AB∥CD(已知)
∴∠4=∠
BAF
两直线平行,同位角相等

∵∠3=∠4(已知)
∴∠3=∠
4
已知

∵∠1=∠2(已知)
∴∠1+∠CAF=∠2+∠CAF(等式的性质)
即∠BAF=∠
CAD

∴∠3=∠
CAD
等量代换

∴AD∥BE(
内错角相等,两直线平行

查看答案和解析>>

14、完形填空:
已知:如图,直线a、b被c所截;∠1、∠2是同位角,且∠1≠∠2,
求证:a不平行b.
证明:假设
a∥b

∠1=∠2
,(两直线平行,同位角相等)
这与
已知∠1≠∠2
相矛盾,所以
假设
不成立,
故a不平行b.

查看答案和解析>>


同步练习册答案