将等式两边以都 得到.这是根据等式性质 . 查看更多

 

题目列表(包括答案和解析)

能使方程左右两边相等的未知数的①
,叫做方程的解.
求方程的解的②
过程
过程
叫做解方程.求方程的解就是将方程变形为③
x=a
x=a
的形式.
等式的两条性质是④
解方程
解方程
的依据.
(1)等式两边都加上或减去同一个数或同一个整式,所得结果仍是⑤
等式
等式

(2)等式两边都乘或除以同一个⑥
不等于0
不等于0
的数,所得结果仍是等式.
方程中的某些项⑦
改变符号
改变符号
后,从方程的一边移到另一边,这样的变形叫做⑧
移项
移项

一般地,解一元一次方程的一般步骤:去分母、⑨
去括号
去括号
、移项、⑩
合并同类项
合并同类项
、未知数的?
系数
系数
化为1.以上步骤不是一成不变的,在解方程时要根据方程的特点灵活运用这些步骤.
去分母和去括号时注意不能漏乘;分数线既具有除号的作用,又具有括号的作用,当分子是多项式时,去分母后,原先的括号要补上;另外,移项时特别注意要改变符号.

查看答案和解析>>

能使方程左右两边相等的未知数的①______,叫做方程的解.
求方程的解的②______叫做解方程.求方程的解就是将方程变形为③______的形式.
等式的两条性质是④______的依据.
(1)等式两边都加上或减去同一个数或同一个整式,所得结果仍是⑤______.
(2)等式两边都乘或除以同一个⑥______的数,所得结果仍是等式.
方程中的某些项⑦______后,从方程的一边移到另一边,这样的变形叫做⑧______.
一般地,解一元一次方程的一般步骤:去分母、⑨______、移项、⑩______、未知数的?______化为1.以上步骤不是一成不变的,在解方程时要根据方程的特点灵活运用这些步骤.
去分母和去括号时注意不能漏乘;分数线既具有除号的作用,又具有括号的作用,当分子是多项式时,去分母后,原先的括号要补上;另外,移项时特别注意要改变符号.

查看答案和解析>>

能使方程左右两边相等的未知数的①______,叫做方程的解.
求方程的解的②______叫做解方程.求方程的解就是将方程变形为③______的形式.
等式的两条性质是④______的依据.
(1)等式两边都加上或减去同一个数或同一个整式,所得结果仍是⑤______.
(2)等式两边都乘或除以同一个⑥______的数,所得结果仍是等式.
方程中的某些项⑦______后,从方程的一边移到另一边,这样的变形叫做⑧______.
一般地,解一元一次方程的一般步骤:去分母、⑨______、移项、⑩______、未知数的?______化为1.以上步骤不是一成不变的,在解方程时要根据方程的特点灵活运用这些步骤.
去分母和去括号时注意不能漏乘;分数线既具有除号的作用,又具有括号的作用,当分子是多项式时,去分母后,原先的括号要补上;另外,移项时特别注意要改变符号.

查看答案和解析>>

等式中找规律

  孙海洋是个爱动脑筋的八年级学生,他特别喜欢数学,一有空就看数学课外书,并琢磨书上的问题.有一次,他从一本书中看到了下面一个有趣的问题:

  仔细观察下面4个等式:

  32=2+22+3

  42=3+32+4

  52=4+42+5

  62=5+52+6

  ……

  请写出第5个等式,由此能发现什么规律?用公式将发现的规律表示出来.

  对这个问题,孙海洋感到很新奇,他认真分析题目给出的4个等式,发现有以下一些结构特征:

  (1)每个等式的左边都是一个自然数的平方,等式的右边都是3个数的和.

  (2)4个等式的左边依次是32、42、52、62,它们的底数3、4、5、6是4个连续的自然数,其大小均比所处等式的序号多2.

  (3)每个等式右边的3个加数也有明显的规律.

  第1个加数和第3个加数是两个连续的自然数,并且第3个加数等于该等式左边平方数的底数,第2个加数也是一个平方数,底数等于第1个加数.

  根据以上规律,孙海洋猜想第5个等式应该是72=6+62+7.

  孙海洋进一步归纳了这5个等式的规律,用公式表示为(n+1)2=n+n2+(n+1)…①其中n=2,3,…

  如果将①式右边变形、左边不变,那么可得(n+1)2=n2+2n+1…②

  等式②多么眼熟啊!它不就是完全平方公式的一个具体应用吗?由此可见,孙海洋同学归纳的规律是正确的.

想一想,当n=0,1时,等式①是否成立?当n为负整数时,等式①是否成立?

查看答案和解析>>


同步练习册答案