已知平面内四点A.B.C.D.请按要求画图: (1)画直线BC (2)连接AB.AC (3)画射线AD (4)延长线段AB.反向延长射线AD 查看更多

 

题目列表(包括答案和解析)

(本小题满分10分)

(1)如图24—1,已知△ABC中,∠BAC=45°,AB="AC," AD⊥BC于D, 将△ABC沿AD剪开,并分别以AB、AC为轴翻转,点E、F分别是点D的对应点,得到△ABE和△ACF (与△ABC在同一平面内).延长EB、FC相交于G点,证明四边形AEGF是正方形;
(2)如果⑴中AB≠AC,其他不变,如图24—2.那么四边形AEGF是否是正方形?请说明理由.
(3)在⑵中,若BD=2,DC=3,求AD的长.

查看答案和解析>>

(本小题满分10分)已知直线y=x+4与x轴,y轴分别交于A、B两点, ∠ABC=60°,BC与x轴交于点C.

(1)试确定直线BC的解析式.

(2)若动点P从A点出发沿AC向点C运动(不与A、C重合),同时动点Q从C点出发

沿CBA向点A运动(不与C、A重合),动点P的运动速度是每秒1个单位长度,动点Q

的运动速度是每秒2个单位长度.设△APQ的面积为S,P点的运动时间为t秒,求S与t的

函数关系式,并写出自变量的取值范围.

(3)在(2)的条件下,当△APQ的面积最大时,y轴上有一点M,平面内是否存在一点

N,使以A、Q、M、N为顶点的四边形为菱形?若存在,请直接写出N点的坐标;若不存

在,请说明理由.

 

查看答案和解析>>

(本小题满分10分)已知直线y=x+4与x轴,y轴分别交于A、B两点,∠ABC=60°,BC与x轴交于点C.
(1)试确定直线BC的解析式.
(2)若动点P从A点出发沿AC向点C运动(不与A、C重合),同时动点Q从C点出发
沿CBA向点A运动(不与C、A重合) ,动点P的运动速度是每秒1个单位长度,动点Q
的运动速度是每秒2个单位长度.设△APQ的面积为S,P点的运动时间为t秒,求S与t的
函数关系式,并写出自变量的取值范围.
(3)在(2)的条件下,当△APQ的面积最大时,y轴上有一点M,平面内是否存在一点
N,使以A、Q、M、N为顶点的四边形为菱形?若存在,请直接写出N点的坐标;若不存
在,请说明理由.

查看答案和解析>>

(本小题满分10分)已知直线y=x+4与x轴,y轴分别交于A、B两点,∠ABC=60°,BC与x轴交于点C.
(1)试确定直线BC的解析式.
(2)若动点P从A点出发沿AC向点C运动(不与A、C重合),同时动点Q从C点出发
沿CBA向点A运动(不与C、A重合) ,动点P的运动速度是每秒1个单位长度,动点Q
的运动速度是每秒2个单位长度.设△APQ的面积为S,P点的运动时间为t秒,求S与t的
函数关系式,并写出自变量的取值范围.
(3)在(2)的条件下,当△APQ的面积最大时,y轴上有一点M,平面内是否存在一点
N,使以A、Q、M、N为顶点的四边形为菱形?若存在,请直接写出N点的坐标;若不存
在,请说明理由.

查看答案和解析>>

(本小题满分10分)已知直线y=x+4与x轴,y轴分别交于A、B两点, ∠ABC=60°,BC与x轴交于点C.

(1)试确定直线BC的解析式.

(2)若动点P从A点出发沿AC向点C运动(不与A、C重合),同时动点Q从C点出发

沿CBA向点A运动(不与C、A重合) ,动点P的运动速度是每秒1个单位长度,动点Q

的运动速度是每秒2个单位长度.设△APQ的面积为S,P点的运动时间为t秒,求S与t的

函数关系式,并写出自变量的取值范围.

(3)在(2)的条件下,当△APQ的面积最大时,y轴上有一点M,平面内是否存在一点

N,使以A、Q、M、N为顶点的四边形为菱形?若存在,请直接写出N点的坐标;若不存

在,请说明理由.

 

查看答案和解析>>


同步练习册答案