题目列表(包括答案和解析)
| 点的个数 | 可作出直线条数 |
| 2 | 1= |
| 3 | 3= |
| 4 | 6= |
| 5 | 10= |
| …… | …… |
| n |
| 点的个数 | 可连成三角形个数 |
| 3 | |
| 4 | |
| 5 | |
| …… | |
| n | |
、阅读下列材料并填空。平面上有n个点(n≥2)且任意三个点不在同一条直线上,过这些点作直线,一共能作出多少条不同的直线?
①分析:当仅有两个点时,可连成1条直线;当有3个点时,可连成3条直线;当有4个点时,可连成6条直线;当有5个点时,可连成10条直线……
②归纳:考察点的个数和可连成直线的条数
发现:如下表
| 点的个数 | 可作出直线条数 |
| 2 | 1= |
| 3 | 3= |
| 4 | 6= |
| 5 | 10= |
| …… | …… |
| n |
| 点的个数 | 可连成三角形个数 |
| 3 | |
| 4 | |
| 5 | |
| …… | |
| n | |
-33的计算结果是( )
A、27 B、9 C、-9 D、-27
33和43分别可以按如图所示方式“分裂”成2个、3个和4个连续奇数的和,63也能按此规律进行“分裂”,则63“分裂”出的奇数中最大的是
![]()
41
39
31
29
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com