6.下面解方程的过程中.从哪一步开始出错的( ). ①去分母.得, ②移项合并.得, ③化系数为.得. A.① B.② C.③ D.没出错 查看更多

 

题目列表(包括答案和解析)

系统抽样

  当总体中的个体数较多时,采用简单随机抽样显得较为费事.这时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本,这种抽样叫做系统抽样.

  例如,为了了解参加某种知识竞赛的1000名学生的成绩,打算从中抽取一个容量为50的样本.假定这1000名学生的编号是1,2,…,1000,由于50∶1000=1∶20,我们将总体均分成50个部分,其中每一部分包括20个个体.例如第1部分的个体的编号是1,2,…,20.然后在第1部分随机抽取一个号码,比如它是第18号,那么可以从第18号起,每隔20个抽取1个号码,这样得到一个容量为50的样本:18,38,58,…,978,998.

  上面,由于总体中的个体数1000正好能被样本容量50整除,可以用它们的比值作为进行系统抽样的间隔.如果不能整除,比如总体中的个体数为1003,样本容量仍为50,这时可用简单随机抽样先从总体中剔除3个个体(可利用随机数表),使剩下的个体数1000能被样本容量50整除,然后再按系统抽样方法往下进行.因为总体中的每个个体被剔除的机会相等,也就是每个个体不被剔除的机会相等,所以在整个抽样过程中每个个体被抽取的机会仍然相等.

  系统抽样的步骤可概括为:

  (1)采用随机的方式将总体中的个体编号.为简便起见,有时可直接利用个体所带有的号码,如考生的准考证号、街道上各户的门牌号,等等.

  (2)为将整个的编号分段(即分成几个部分),要确定分段的间隔k.当(N为总体中的个体数,n为样本容量)是整数时,k=;当不是整数时,通过从总体中剔除一些个体使剩下的总体中个体个数能被n整除,这时k=

  (3)在第1段用简单随机抽样确定起始的个体编号l

  (4)按照事先确定的规则抽取样本.通常是将l加上间隔k,得到第2个编号l+k,再将(l+k)加上k,得到第3个编号l+2k,这样继续下去,直到获取整个样本.

在10000个有机会中奖的号码(编号为0000~9999)中,有关部门按照随机抽取的方式确定后两位数字为37的号码为中奖号码.这是运用哪种抽样方法来确定中奖号码的?试依次写出这100个中奖号码的开始3个和最后3个.

查看答案和解析>>

阅读下列解方程的过程,然后回答问题.

解方程

解:(第一步)设y=,则原方程可以化为y2-5y+6=0.

(第二步)解这个方程得y1=2,y2=3.

(第三步)当y1=2时,即=2,解得x1=2.

当y2=3时,即=3,解得

(第四步)所以原方程的根为x1=2,

问题:

(1)

在第一步中,使用的方法是________.

(2)

在第二步中,解此一元二次方程用哪一种方法最为简捷?从下面选项中选

择一种是

[  ]

A.

公式法

B.

配方法

C.

因式分解法

D.

直接开平方法

(3)

上述解题过程是否完整,若不完整,请补充.

(4)

上述解题过程中用到了

[  ]

A.

数形结合思想

B.

转化思想

C.

整体思想

D.

函数思想

E.

统计思想

查看答案和解析>>


同步练习册答案