15.我们已经学习了有理数的乘方.根据幂的意义知道.107就是7个10相乘.35就是5 个3相乘.那么.我们怎样计算107×102.35×33呢? 我们知道107=10×10×10×10×10×10×10.102=10×10. 所以107×102=(10×10×10×10×10×10×10)× =10×10×10×10×10×10×10×10×10 =109. 同理.35×33=×=3×3×3×3×3×3×3×3 =38. (1)观察上述计算过程.你可以发现a×a= (写成幂的形式.其中m.n为正整数). (2)利用你发现的结论计算: 93×96= ,(-3)4×(-3)5= ,(-2)3×(-2)4×(-2)5= 查看更多

 

题目列表(包括答案和解析)

我们已经学习了有理数的乘方,根据幂的意义知道107就是7个10连乘.35被是5个3连乘,那么我们怎样计算107×102,35×33呢?
我们知道107=10×10×10×10×10×10×10102═10×10
所以107×102=(10×10×10×10×10×10×10)×(10×10)
=10×10×10×10×10×10×10×10×10;
=109
同理35×33=(3×3×3×3×3)×(3×3×3)
=3×3×3×3×3×3×3×3=38
再如a3•a2=(aaa)•(aa)=a•a•a•a•a=a5
也就是107×102=109,35×33=38,a3•a2=a5
观察上面三式等号左端两个幂的指数和右端的底数与指数.你会发现每个等式左端两个幂的底数
相同
相同
.右端幂的底数与左端两个幂的底数
相同
相同
.左端两个幂的指数的与右端幂的指数相等.由此你认为am•an=
am+n
am+n

查看答案和解析>>

我们已经学习了有理数的乘方,根据幂的意义知道107就是7个10连乘.35被是5个3连乘,那么我们怎样计算107×102,35×33呢?
我们知道107=10×10×10×10×10×10×10102═10×10
所以107×102=(10×10×10×10×10×10×10)×(10×10)
=10×10×10×10×10×10×10×10×10;
=109
同理35×33=(3×3×3×3×3)×(3×3×3)
=3×3×3×3×3×3×3×3=38
再如a3•a2=(aaa)•(aa)=a•a•a•a•a=a5
也就是107×102=109,35×33=38,a3•a2=a5
观察上面三式等号左端两个幂的指数和右端的底数与指数.你会发现每个等式左端两个幂的底数______.右端幂的底数与左端两个幂的底数______.左端两个幂的指数的与右端幂的指数相等.由此你认为am•an=______.

查看答案和解析>>

在数学学习过程中,通常是利用已有的知识与经验,通过对研究对象进行观察、实验、推理、抽象概括,发现数学规律,揭示研究对象的本质特征.

比如撏?资?莸某朔ǚㄔ驍的学习过程是利用有理数的乘方概念和乘法结合律,由撎厥鈹到撘话銛进行抽象概括的:

都是正整数).

我们亦知:

(1)请你根据上面的材料归纳出之间的一个数学关系式;

(2)试用(1)中你归纳的数学关系式,解释下面生活中的一个现象:撊-克糖水里含有克糖,再加入克糖(仍不饱和),则糖水更甜了敚?/P>

(3)如图,在中,.能否根据这个图形提炼出与(1)中同样的关系式?并给予证明.

查看答案和解析>>

在数学学习过程中,通常是利用已有的知识与经验,通过对研究对象进行观察、实验、推理、抽象概括,发现数学规律,揭示研究对象的本质特征.
比如“同底数幂的乘法法则”的学习过程是利用有理数的乘方概念和乘法结合律,由“特殊”到“一般”进行抽象概括的:
22×23=25,23×24=27,22×26=28,…?2m×2n=2m+n,…?am×an=am+n(m、n都是正整数).我们亦知:
2
3
2+1
3+1
2
3
2+2
3+2
2
3
2+3
3+3
2
3
2+4
3+4
,…
(1)请你根据上面的材料归纳出a、b、c(a>b>0,c>0)之间的一个数学关系式;
(2)试用(1)中你归纳的数学关系式,解释下面生活中的一个现象:“若m克糖水里含有n克糖,再加入k克糖(仍不饱和),则糖水更甜了”;
(3)如图,在Rt△ABC中,∠C=90°,CB=a,CA=b,AD=BE=c(a>b),能否根据这个图形提炼出与(1)中相精英家教网同的关系式并给予证明.

查看答案和解析>>

在数学学习过程中,通常是利用已有的知识与经验,通过对研究对象进行观察、实验、推理、抽象概括,发现数学规律,揭示研究对象的本质特征.
比如“同底数幂的乘法法则”的学习过程是利用有理数的乘方概念和乘法结合律,由“特殊”到“一般”进行抽象概括的:22×23=25,23×24=27,22×26=28…?2m×2n=2m+n…?am×an=am+n(m、n都是正整数).
我们亦知:
2
3
2+1
3+1
2
3
2+2
3+2
2
3
2+3
3+3
2
3
2+4
3+4

(1)请你根据上面的材料归纳出a、b、c(a>b>0,c>0)之间的一个数学关系式.
(2)试用(1)中你归纳的数学关系式,解释下面生活中的一个现象:“若m克糖水里含有n克糖,再加入k克糖(仍不饱和),则糖水更甜了”.

查看答案和解析>>