
如图,在平面直角坐标系中,将一块腰长为
的等腰直角三角板ABC放在第二象限,且斜靠在两坐标轴上,直角顶点C的坐标为(-1,0),点B在抛物线y=ax
2+ax-2上,
(1)点A的坐标为
(0,2)
(0,2)
,点B的坐标为
(-3,1)
(-3,1)
;抛物线的解析式为
;
(2)在抛物线上是否还存在点P(点B除外),使△ACP是以AC为直角边的直角三角形?若存在,请求出所有点P的坐标;若不存在,请说明理由.
(3)若点D是(1)中所求抛物线在第三象限内的一个动点,连接BD、CD.当△BCD的面积最大时,求点D的坐标.
(4)若点P是(1)中所求抛物线上一个动点,以线段AB、BP为邻边作平行四边形ABPQ.当点Q落在x轴上时,直接写出点P的坐标.