26.解:原式=---------------2分 =--------------5分 =.---------------------------------6分 当.y=2时.原式=4.------------------------8分. 查看更多

 

题目列表(包括答案和解析)

如图①,在梯形ABCD中,CD∥AB,∠ABC=90°,∠DAB=60°,AD=2,CD=4.另有一直角三角形EFG,∠EFG=90°,点G与点E重合,点E与点A重合,点F在AB上,让△EFG的边EF在AB上,点G在DC上,以每秒1个单位的速度沿着AB方向向右运动,如图②,点F与点B重合时停止运动,设运动时间为t秒.

(1)在上述运动过程中,请分别写出当四边形FBCG为正方形和四边形AEGD为平行四边形时对应时刻t的值或范围;

(2)以点A为原点,以AB所在直线为x轴,过点A垂直于AB的直线为y轴,建立如图所示的坐标系.求过A,D,C三点的抛物线的解析式;

(3)探究:延长EG交(2)中的抛物线于点Q,是否存在这样的时刻t使得△ABQ的面积与梯形ABCD的面积相等?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

如图,在矩形ABCO中,AO=3,tan∠ACB=,以O为坐标原点,OC为x轴,OA为y轴建立平面直角坐标系.设D,E分别是线段AC,OC上的动点,它们同时出发,点D以每秒3个单位的速度从点A向点C运动,点E以每秒1个单位的速度从点C向点O运动,设运动时间为t秒.

(1)求直线AC的解析式;

(2)用含t的代数式表示点D的坐标;

(3)当t为何值时,△ODE为直角三角形?

(4)在什么条件下,以Rt△ODE的三个顶点能确定一条对称轴平行于y轴的抛物线?并请选择一种情况,求出所确定抛物线的解析式.

查看答案和解析>>

如图,抛物线y=x2与直线相交于OA两点,点P沿着抛物线从点A出发,按横坐标大于点A的横坐标方向运动,PS∥x轴,交直线OA于点SPQ⊥x轴,SR⊥x轴,垂足为QR

(1)当点P的横坐标为2时,回答下面问题:

①求S点的坐标.②求通过原点,且平分矩形PQRS面积的直线解析式.

(2)当矩形PQRS为正方形时,求点P的坐标.

查看答案和解析>>

如图,△AOC在平面直角坐标系中,∠AOC=90°,且O为坐标原点,点A、C分别在坐标轴上,AO=4,OC=3,将△AOC绕点C按逆时针方向旋转,旋转后的三角形记为△C

(1)当CA边落在y轴上(其中旋转角为锐角)时,一条抛物线经过A、C两点且与直线A相交于x轴下方一点D,如果S△AOD=9,求这条抛物线的解析式;

(2)继续旋转△C,当以C为直径的⊙P与(1)中抛物线的对称轴相切时,圆心P是否在抛物线上,请说明理由.

查看答案和解析>>

如图①,矩形ABCD被对角线AC分为两个直角三角形,AB=3,BC=6.现将Rt△ADC绕点C顺时针旋转90°,点A旋转后的位置为点E,点D旋转后的位置为点F.以C为原点,以BC所在直线为x轴,以过点C垂直于BC的直线为y轴,建立如图②的平面直角坐标系.

(1)求直线AE的解析式;

(2)将Rt△EFC沿x轴的负半轴平行移动,如图③.设OC=x(0<x≤9),Rt△EFC与Rt△ABO的重叠部分面积为s;

①当x=1与x=8时,分别求出s的值;

S是否存在最大值?若存在,求出这个最大值及此时x的值;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案