题目列表(包括答案和解析)
| 点的个数 | 可连成的三角形的个数 |
| 3 | ________ |
| 4 | ________ |
| 5 | ________ |
| … | … |
| n | ________ |
阅读以下材料并填空.
平面上有n个点(n≥2),且任意三个点不在同一直线上,过这些点作直线,一共能作出多少条不同的直线?
(1)分析:当仅有两个点时,可连成1条直线;当有3个点时,可连成3条直线;当有4个点时,可连成6条直线;当有5个点时,可连成10条直线……
(2)归纳:考察点的个数n和可连成直线的条数Sn,发现:
(3)推理:平面上有n个点,两点确定一条直线.取第一个点A有n种取法,取第二个点B有(n-1)种取法,所以一共可连成n(n-1)条直线,但AB与BA是同一条直线,故应除以2,即![]()
(4)结论:![]()
试探究以下问题:
平面上有n(n≥3)个点,任意三个点不在同一直线上,过任意三点作三角形,一共能作出多少不同的三角形?
(1)分析:当仅有3个点时,可作________个三角形;当有4个点时,可作________个三角形;当有5个点时,可作________个三角形;……
(2)归纳:考察点的个数n和可作出的三角形的个数Sn,发现:(填下表)
(3)推理:
(4)结论:
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com