40° 70° 30.角平分线 查看更多

 

题目列表(包括答案和解析)

在△ABC中,AD是角平分线,AE是高线
①如图1所示,∠ABC=40°,∠ACB=70°,求∠DAE.
②如图2所示,∠ABC=30°,∠ACB=110°,求∠DAE.
③根据①、②两题的计算结果,请猜想∠DAE与∠ABC和∠ACB之间的关系.(用等式表示出来)

查看答案和解析>>

在△ABC中,AD是角平分线,AE是高线
①如图1所示,∠ABC=40°,∠ACB=70°,求∠DAE.
②如图2所示,∠ABC=30°,∠ACB=110°,求∠DAE.
③根据①、②两题的计算结果,请猜想∠DAE与∠ABC和∠ACB之间的关系.(用等式表示出来)

查看答案和解析>>

已知:△ABC中,AE平分∠BAC。
(1)如图①AD⊥BC于D,若∠C =70°,∠B =30°,则∠DAE=          
(2)如图②所示,在△ABC中AD⊥BC,AE平分∠BAC,F是AE上的任意一点,过F作FG⊥BC于G,且∠B=40°,∠C=80°,求∠EFG的度数;
(3)在(2)的条件下,若F点在AE的延长线上(如图③),其他条件不变,则∠EFG的角度大小发生改变吗?说明理由.

查看答案和解析>>

已知:△ABC中,∠C>∠B,AE平分∠BAC.
(1)如图①AD⊥BC于D,若∠C=70°,∠B=30°,请你用量角器直接量出∠DAE的度数;
(2)若△ABC中,∠B=α,∠C=β(α<β),根据第一问的结果大胆猜想∠DAE与α、β间的等量关系,不必说理由;
(3)如图②所示,在△ABC中AD⊥BC,AE平分∠BAC,F是AE上的任意一点,过F作FG⊥BC于G,且∠B=40°,∠C=80°,请你运用(2)中结论求出∠EFG的度数;
(4)在(3)的条件下,若F点在AE的延长线上(如图③),其他条件不变,则∠EFG的度数大小发生改变吗?说明理由.

查看答案和解析>>

如图①,在△ABC中,CD、CE分别是△ABC的高和角平分线,∠BAC=α,∠B=β(α>β).
(1)若α=70°,β=40°,求∠DCE的度数;
(2)试用α、β的代数式表示∠DCE的度数(直接写出结果);
(3)如图②,若CE是△ABC外角∠ACF的平分线,交BA延长线于点E,且α-β=30°,求∠DCE的度数.

查看答案和解析>>


同步练习册答案