2.在数轴上标出2.-1.5..-3及它们的相反数.观察每对相反数所对应的点到原点的距离有什么关系. 查看更多

 

题目列表(包括答案和解析)

在数轴上标出以及它们的相反数,并比较这四个数的大小.

 

查看答案和解析>>

如图1,矩形OABC的顶点O为原点,点E在AB上,把△CBE沿CE折叠,使点B落在OA边上的点D处,点A、D坐标分别为(10,0)和(6,0),抛物线y=
1
5
x2+bx+c
过点C、B.
(1)求C、B两点的坐标及该抛物线的解析式;
(2)如图2,长、宽一定的矩形PQRS的宽PQ=1,点P沿(1)中的抛物线滑动,在滑动过程中PQ∥x轴,且RS在PQ的下方,当P点横坐标为-1时,点S距离x轴
11
5
个单位,当矩形PQRS在滑动过程中被x轴分成上下两部分的面积比为2:3时,求点P的坐标;
(3)如图3,动点M、N同时从点O出发,点M以每秒3个单位长度的速度沿折线ODC按O→D→C的路线运动,点N以每秒8个单位长度的速度沿折线OCD按O?C?D的路线运动,当M、N两点相遇时,它们都停止运动.设M、N同时从点O出发t秒时,△OMN的面积为S.①求出S与t的函数关系式,并写出t的取值范围:②设S0是①中函数S的最大值,那么S0=
 

精英家教网

查看答案和解析>>

如图1,矩形OABC的顶点O为原点,点E在AB上,把△CBE沿CE折叠,使点B落在OA边上的点D处,点A、D坐标分别为(10,0)和6,0),抛物线过点C、B.   
(1)求C、B两点的坐标及该抛物线的解析式;  
(2)如图2,长、宽 一定的矩形PQRS的宽PQ =1,点P沿(1)中的抛物线滑动,在滑动过程中PQ∥x轴,且'RS在PQ的下方,当P点横坐标为-1时。点s距离x轴 个单位,当矩形PQRS在滑动过程中被x轴分成上下两部分的面积比为2:3时,求点P的坐标;  
(3)如图3,动点M、N同时从点O出发,点M以每秒3个单位长度的速度沿折线 ODC按的路线运动,点N以每秒8个单位长度的速度沿折线OCD按的路线运动,当M、N两点相遇时,它们都停止运动.设M、N同时从点O出发t秒时,△OMN的面积S.①求出S与t的函数关系式,并写出t的取值范围:②设S0是①中函数S的最大值,那么S0= ________         

                                                  图2                                图3

查看答案和解析>>

如图,现有两块全等的直角三角形纸板Ⅰ,Ⅱ,它们两直角边的长分别为1和2.将它们分别放置于平面直角坐标系中的△AOB,△COD处,直角边OB,OD在x轴上.一直尺精英家教网从上方紧靠两纸板放置,让纸板Ⅰ沿直尺边缘平行移动.当纸板Ⅰ移动至△PEF处时,设PE,PF与OC分别交于点M,N,与x轴分别交于点G,H.
(1)求直线AC所对应的函数关系式;
(2)当点P是线段AC(端点除外)上的动点时,试探究:
①点M到x轴的距离h与线段BH的长是否总相等?请说明理由;
②两块纸板重叠部分(图中的阴影部分)的面积S是否存在最大值?若存在,求出这个最大值及S取最大值时点P的坐标;若不存在,请说明理由.

查看答案和解析>>

如图,现有两块全等的直角三角形纸板Ⅰ,Ⅱ,它们两直角边的长分别为1和2.将它们分别放置于平面直角坐标系中的处,直角边轴上.一直尺从上方紧靠两纸板放置,让纸板Ⅰ沿直尺边缘平行移动.当纸板Ⅰ移动至处时,设分别交于点,与轴分别交于点
(1)求直线所对应的函数关系式;
(2)当点是线段(端点除外)上的动点时,试探究:
①点轴的距离与线段的长是否总相等?请说明理由;
②两块纸板重叠部分(图中的阴影部分)的面积是否存在最大值?若存在,求出这个最大值及取最大值时点的坐标;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案